test_transforms.py 24 KB
Newer Older
1
2
3
4
import torch
import torchvision.transforms as transforms
import unittest
import random
5
import numpy as np
6
7
8
9
10
11
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

12
13
14
15
16
try:
    from scipy import stats
except ImportError:
    stats = None

17
18

GRACE_HOPPER = 'assets/grace_hopper_517x606.jpg'
19

20

21
class Tester(unittest.TestCase):
22

23
24
25
26
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
27
28
        owidth = random.randint(5, (width - 2) / 2) * 2

29
        img = torch.ones(3, height, width)
30
31
32
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
33
34
35
36
37
38
39
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
40
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
41
42
43
44
45
46
47
48
49
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
50
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
51
        oheight += 1
52
        owidth += 1
53
54
55
56
57
58
59
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
60
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
61
        assert sum2 > sum1, "height: " + str(height) + " width: " \
62
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

            assert len(results) == 5
            for crop in results:
                assert crop.size == (crop_w, crop_h)

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
            assert results == expected_output

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
105
106
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
107
108
                    five_crop = transforms.FiveCrop(crop_h)
                else:
109
110
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

                assert len(results) == 10
                assert expected_output == results

126
    def test_resize(self):
127
128
129
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
130

131
132
133
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
134
            transforms.Resize(osize),
135
136
137
138
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
139
            assert result.size(1) <= result.size(2)
140
141
142
        elif width < height:
            assert result.size(1) >= result.size(2)

143
144
        result = transforms.Compose([
            transforms.ToPILImage(),
145
            transforms.Resize([osize, osize]),
146
147
148
149
150
151
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

152
153
154
155
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
156
            transforms.Resize((oheight, owidth)),
157
158
159
160
161
162
163
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
164
            transforms.Resize([oheight, owidth]),
165
166
167
168
169
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

170
171
172
173
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
174
        owidth = random.randint(5, (width - 2) / 2) * 2
175
176
177
178
179
180
181
182
183
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

184
185
186
187
188
189
190
191
192
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

193
194
195
196
197
198
199
200
201
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
        assert result.size(1) == height
        assert result.size(2) == width
        assert np.allclose(img.numpy(), result.numpy())

202
203
204
205
206
207
208
209
210
211
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
212
213
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

229
    def test_pad_raises_with_invalid_pad_sequence_len(self):
230
231
232
233
234
235
236
237
238
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
239
240
241
242
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
243
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
244
245
246
247

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
248
249
        assert (y.equal(x))

250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def test_to_tensor(self):
        channels = 3
        height, width = 4, 4
        trans = transforms.ToTensor()
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

        ndarray = np.random.randint(low=0, high=255, size=(height, width, channels))
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
        assert np.allclose(output.numpy(), expected_output)

264
265
266
267
268
269
270
271
272
273
274
275
276
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
277
            transforms.Resize(256, interpolation=Image.LINEAR),
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    def test_tensor_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data = torch.Tensor(3, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy())
        assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy())
        assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy())

        # single channel image
        img_data = torch.Tensor(1, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(l).numpy())

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    def test_tensor_gray_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

        img_byte = trans(img_data_byte)
        img_short = trans(img_data_short)
        img_int = trans(img_data_int)
        assert img_byte.mode == 'L'
        assert img_short.mode == 'I;16'
        assert img_int.mode == 'I'

        assert np.allclose(img_data_short.numpy(), to_tensor(img_short).numpy())
        assert np.allclose(img_data_int.numpy(), to_tensor(img_int).numpy())

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    def test_tensor_rgba_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data = torch.Tensor(4, 4, 4).uniform_()
        img = trans(img_data)
        assert img.mode == 'RGBA'
        assert img.getbands() == ('R', 'G', 'B', 'A')
        r, g, b, a = img.split()

        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy())
        assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy())
        assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy())
        assert np.allclose(expected_output[3].numpy(), to_tensor(a).numpy())

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def test_ndarray_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        assert np.allclose(r, img_data[:, :, 0])
        assert np.allclose(g, img_data[:, :, 1])
        assert np.allclose(b, img_data[:, :, 2])

        # single channel image
        img_data = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        assert np.allclose(l, img_data[:, :, 0])
376

377
    def test_ndarray_bad_types_to_pil_image(self):
378
        trans = transforms.ToPILImage()
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        with self.assertRaises(AssertionError):
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

    def test_ndarray_gray_float32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.FloatTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'F'
        assert np.allclose(img, img_data[:, :, 0])

    def test_ndarray_gray_int16_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ShortTensor(4, 4, 1).random_().numpy()
395
396
397
        img = trans(img_data)
        assert img.mode == 'I;16'
        assert np.allclose(img, img_data[:, :, 0])
398

399
400
401
402
403
404
405
    def test_ndarray_gray_int32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.IntTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'I'
        assert np.allclose(img, img_data[:, :, 0])

406
407
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
408
409
        random_state = random.getstate()
        random.seed(42)
410
411
412
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

413
        num_samples = 250
414
        num_vertical = 0
415
        for _ in range(num_samples):
416
417
418
419
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

420
421
422
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
423
424
425

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
426
427
        random_state = random.getstate()
        random.seed(42)
428
429
430
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

431
        num_samples = 250
432
        num_horizontal = 0
433
        for _ in range(num_samples):
434
435
436
437
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

438
439
440
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    @unittest.skipIf(stats is None, 'scipt.stats is not available')
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = transforms.adjust_brightness(x_pil, 1)
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
        y_pil = transforms.adjust_brightness(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
        y_pil = transforms.adjust_brightness(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = transforms.adjust_contrast(x_pil, 1)
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
        y_pil = transforms.adjust_contrast(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
        y_pil = transforms.adjust_contrast(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = transforms.adjust_saturation(x_pil, 1)
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
        y_pil = transforms.adjust_saturation(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
        y_pil = transforms.adjust_saturation(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
            transforms.adjust_hue(x_pil, -0.7)
            transforms.adjust_hue(x_pil, 1)

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
        y_pil = transforms.adjust_hue(x_pil, 0)
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 1
        y_pil = transforms.adjust_hue(x_pil, 0.25)
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
        y_pil = transforms.adjust_hue(x_pil, -0.25)
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = transforms.adjust_gamma(x_pil, 1)
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
        y_pil = transforms.adjust_gamma(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
        y_pil = transforms.adjust_gamma(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
        assert transforms.adjust_brightness(x_l, 2).mode == 'L'
        assert transforms.adjust_saturation(x_l, 2).mode == 'L'
        assert transforms.adjust_contrast(x_l, 2).mode == 'L'
        assert transforms.adjust_hue(x_l, 0.4).mode == 'L'
        assert transforms.adjust_gamma(x_l, 0.5).mode == 'L'

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
            assert y_pil.mode == x_pil.mode

            y_pil_2 = color_jitter(x_pil_2)
            assert y_pil_2.mode == x_pil_2.mode

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    def test_linear_transformation(self):
        x = torch.randn(250, 10, 10, 3)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        # initialize whitening matrix
        whitening = transforms.LinearTransformation(principal_components)
        # pass first vector
        xwhite = whitening(x[0].view(10, 10, 3))
        # estimate covariance
        xwhite = xwhite.view(1, 300).numpy()
        cov = np.dot(xwhite, xwhite.T) / x.size(0)
        assert np.allclose(cov, np.identity(1), rtol=1e-3)

638

639
640
if __name__ == '__main__':
    unittest.main()