@@ -194,7 +194,6 @@ This is popularly used to train the Inception networks
...
@@ -194,7 +194,6 @@ This is popularly used to train the Inception networks
- size: size of the smaller edge
- size: size of the smaller edge
- interpolation: Default: PIL.Image.BILINEAR
- interpolation: Default: PIL.Image.BILINEAR
### `Pad(padding, fill=0)`
### `Pad(padding, fill=0)`
Pads the given image on each side with `padding` number of pixels, and the padding pixels are filled with
Pads the given image on each side with `padding` number of pixels, and the padding pixels are filled with
pixel value `fill`.
pixel value `fill`.
...
@@ -209,6 +208,14 @@ Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the tor
...
@@ -209,6 +208,14 @@ Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of the tor
-`ToTensor()` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
-`ToTensor()` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
-`ToPILImage()` - Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]
-`ToPILImage()` - Converts a torch.*Tensor of range [0, 1] and shape C x H x W or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C to a PIL.Image of range [0, 255]
## Generic Transofrms
### `Lambda(lambda)`
Given a Python lambda, applies it to the input `img` and returns it.