test_transforms.py 72.6 KB
Newer Older
1
import os
2
3
import torch
import torchvision.transforms as transforms
4
import torchvision.transforms.functional as F
5
import torchvision.transforms.functional_tensor as F_t
6
from torch._utils_internal import get_file_path_2
7
from numpy.testing import assert_array_almost_equal
8
import unittest
9
import math
10
import random
11
import numpy as np
12
13
14
15
16
17
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
21
22
try:
    from scipy import stats
except ImportError:
    stats = None

23
from common_utils import cycle_over, int_dtypes, float_dtypes
24
25


26
27
GRACE_HOPPER = get_file_path_2(
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'grace_hopper_517x606.jpg')
28
29


30
class Tester(unittest.TestCase):
31

32
33
34
35
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
36
37
        owidth = random.randint(5, (width - 2) / 2) * 2

38
        img = torch.ones(3, height, width)
39
40
41
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
42
43
44
45
46
47
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
48
49
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
50
51
52
53
54
55
56
57
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
58
59
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
60
        oheight += 1
61
        owidth += 1
62
63
64
65
66
67
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
68
69
70
71
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

90
            self.assertEqual(len(results), 5)
91
            for crop in results:
92
                self.assertEqual(crop.size, (crop_w, crop_h))
93
94
95
96
97
98
99
100

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
101
            self.assertEqual(results, expected_output)
102
103
104
105
106
107
108
109
110
111
112
113

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
114
115
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
116
117
                    five_crop = transforms.FiveCrop(crop_h)
                else:
118
119
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
120
121
122
123
124
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
125
126
127
128
129

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

130
131
132
133
134
135
136
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

137
138
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
139

140
141
142
143
144
145
146
147
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
148
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
149
        for _ in range(10):
150
            scale_min = max(round(random.random(), 2), min_scale)
151
            scale_range = (scale_min, scale_min + round(random.random(), 2))
152
            aspect_min = max(round(random.random(), 2), epsilon)
153
154
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
155
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
156
            aspect_ratio_obtained = w / h
157
158
159
160
161
162
163
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
164

165
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
166
        for _ in range(10):
167
168
169
170
171
172
173
174
175
176
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
177
178
179
180
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_randomperspective_fill(self):
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
208

209
210
211
212
213
214
215
216
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

217
    def test_resize(self):
218
219
220
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
221

222
223
224
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
225
            transforms.Resize(osize),
226
227
            transforms.ToTensor(),
        ])(img)
228
        self.assertIn(osize, result.size())
229
        if height < width:
230
            self.assertLessEqual(result.size(1), result.size(2))
231
        elif width < height:
232
            self.assertGreaterEqual(result.size(1), result.size(2))
233

234
235
        result = transforms.Compose([
            transforms.ToPILImage(),
236
            transforms.Resize([osize, osize]),
237
238
            transforms.ToTensor(),
        ])(img)
239
240
241
        self.assertIn(osize, result.size())
        self.assertEqual(result.size(1), osize)
        self.assertEqual(result.size(2), osize)
242

243
244
245
246
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
247
            transforms.Resize((oheight, owidth)),
248
249
            transforms.ToTensor(),
        ])(img)
250
251
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
252
253
254

        result = transforms.Compose([
            transforms.ToPILImage(),
255
            transforms.Resize([oheight, owidth]),
256
257
            transforms.ToTensor(),
        ])(img)
258
259
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
260

261
262
263
264
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
265
        owidth = random.randint(5, (width - 2) / 2) * 2
266
267
268
269
270
271
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
272
273
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
274

275
276
277
278
279
280
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
281
282
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
283

284
285
286
287
288
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
289
290
291
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
        self.assertTrue(np.allclose(img.numpy(), result.numpy()))
292

293
294
295
296
297
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
298
299
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
300

vfdev's avatar
vfdev committed
301
302
303
304
305
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

306
307
308
309
310
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
311
        fill = random.randint(1, 50)
312
313
        result = transforms.Compose([
            transforms.ToPILImage(),
314
            transforms.Pad(padding, fill=fill),
315
316
            transforms.ToTensor(),
        ])(img)
317
318
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
319
320
321
322
323
324
325
326
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        self.assertTrue((result[:, :padding, :] - fill_v).abs().max() < eps)
        self.assertTrue((result[:, :, :padding] - fill_v).abs().max() < eps)
        self.assertRaises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                          transforms.ToPILImage()(img))
Soumith Chintala's avatar
Soumith Chintala committed
327

328
329
330
331
332
333
334
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
335
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
336
337
338

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
339
340
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
341

342
343
344
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

345
346
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
347
        img = torch.zeros(3, 27, 27).byte()
348
349
350
351
352
353
354
355
356
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
357
358
        self.assertTrue(np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
359
360
361
362
363
364

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
365
366
        self.assertTrue(np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
367
368
369
370
371
372

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
373
374
        self.assertTrue(np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
375

376
377
378
379
380
381
382
383
384
385
        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        self.assertTrue(np.all(symmetric_neg_middle_left == np.asarray([1, 0, 0])))
        self.assertTrue(np.all(symmetric_neg_middle_right == np.asarray([200, 200, 0, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img_neg).size(), (3, 28, 31))

386
    def test_pad_raises_with_invalid_pad_sequence_len(self):
387
388
389
390
391
392
393
394
395
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

396
397
398
399
400
401
402
403
    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        self.assertSequenceEqual(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])

Soumith Chintala's avatar
Soumith Chintala committed
404
405
406
407
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
408
        self.assertTrue(y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
409
410
411
412

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
413
        self.assertTrue(y.equal(x))
414

415
416
417
        # Checking if Lambda can be printed as string
        trans.__repr__()

418
    @unittest.skipIf(stats is None, 'scipy.stats not available')
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
439
        self.assertGreater(p_value, 0.0001)
440
441
442
443

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

444
    @unittest.skipIf(stats is None, 'scipy.stats not available')
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
470
        self.assertGreater(p_value, 0.0001)
471
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
472
        self.assertGreater(p_value, 0.0001)
473
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
474
        self.assertGreater(p_value, 0.0001)
475
476
477
478
479

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

480
    @unittest.skipIf(stats is None, 'scipy.stats not available')
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
501
        self.assertGreater(p_value, 0.0001)
502
503
504
505

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

506
    def test_to_tensor(self):
507
        test_channels = [1, 3, 4]
508
509
        height, width = 4, 4
        trans = transforms.ToTensor()
510

511
512
513
514
515
516
517
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

518
519
520
521
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
522
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
523

524
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
525
526
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
527
            self.assertTrue(np.allclose(output.numpy(), expected_output))
528

529
530
531
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
532
            self.assertTrue(np.allclose(output.numpy(), expected_output))
533

534
535
536
537
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
538
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
539

540
541
542
543
544
545
546
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

        for dtype in float_dtypes():
            self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)

547
548
549
550
551
552
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
553
554
                    transform_script = torch.jit.script(F.convert_image_dtype)

555
                    output_image = transform(input_image)
556
557
558
559
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
560
561
562
563
564
565
566
567
568
569
570
571
572

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
573
                    transform_script = torch.jit.script(F.convert_image_dtype)
574
575
576
577
578
579
580
581

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
582
583
584
585
                        output_image_script = transform_script(input_image, output_dtype)

                        script_diff = output_image_script - output_image
                        self.assertLess(script_diff.abs().max(), 1e-6)
586
587
588
589
590
591
592
593
594
595
596
597
598

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
599
600
                    transform_script = torch.jit.script(F.convert_image_dtype)

601
                    output_image = transform(input_image)
602
603
604
605
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
624
625
                    transform_script = torch.jit.script(F.convert_image_dtype)

626
                    output_image = transform(input_image)
627
628
629
630
631
632
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script.float() - output_image.float()
                    self.assertLess(
                        script_diff.abs().max(), 1e-6, msg="{} vs {}".format(output_image_script, output_image)
                    )
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

666
667
668
669
670
671
672
673
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
            self.assertTrue(np.allclose(output.numpy(), expected_output))

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
            self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
717
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
718
719
720
721

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
722
            transforms.Resize(256, interpolation=Image.LINEAR),
723
724
725
            transforms.ToTensor(),
        ])

726
727
728
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

729
730
731
732
733
734
735
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
736
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
737
738
739
740
741
742
743
744

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

745
746
747
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

748
749
750
751
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
752
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
753

754
    def test_1_channel_tensor_to_pil_image(self):
755
756
        to_tensor = transforms.ToTensor()

757
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
758
759
760
761
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

762
763
764
765
766
767
768
769
770
771
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
772
773
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
774
775
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
776
777
778
        self.assertEqual(img_F_mode.mode, 'F')
        self.assertTrue(np.allclose(np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')),
                                    np.array(img_F_mode)))
779
780
781
782
783
784
785
786
787
788
789
790

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
791
792
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data[:, :, 0], img))
793

surgan12's avatar
surgan12 committed
794
795
796
797
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
798
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
799
800
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
801
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
802
803
            split = img.split()
            for i in range(2):
804
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
surgan12's avatar
surgan12 committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
822
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
823
824
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
825
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
826
827
            split = img.split()
            for i in range(2):
828
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
829
830
831
832
833
834
835
836
837
838
839
840

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

841
842
843
844
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
845
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
846
847
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
848
                self.assertEqual(img.mode, mode)
849
850
            split = img.split()
            for i in range(3):
851
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
852

853
854
855
856
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
857

858
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
859
            # should raise if we try a mode for 4 or 1 or 2 channel images
860
861
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
862
            transforms.ToPILImage(mode='LA')(img_data)
863

Varun Agrawal's avatar
Varun Agrawal committed
864
865
866
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

867
868
869
870
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
871
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
872
873
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
874
                self.assertEqual(img.mode, mode)
875
876
            split = img.split()
            for i in range(3):
877
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
878

879
880
881
882
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

883
884
885
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

886
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
887
            # should raise if we try a mode for 4 or 1 or 2 channel images
888
889
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
890
            transforms.ToPILImage(mode='LA')(img_data)
891
892
893
894
895

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
896
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
897
898
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
899
                self.assertEqual(img.mode, mode)
900
901
902

            split = img.split()
            for i in range(4):
903
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
904

905
        img_data = torch.Tensor(4, 4, 4).uniform_()
906
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
907
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
908
            verify_img_data(img_data, expected_output, mode)
909

910
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
911
            # should raise if we try a mode for 3 or 1 or 2 channel images
912
913
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
914
            transforms.ToPILImage(mode='LA')(img_data)
915
916
917
918
919

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
920
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
921
922
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
923
                self.assertEqual(img.mode, mode)
924
925
            split = img.split()
            for i in range(4):
926
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
927

928
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
929
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
930
            verify_img_data(img_data, mode)
931

932
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
933
            # should raise if we try a mode for 3 or 1 or 2 channel images
934
935
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
936
            transforms.ToPILImage(mode='LA')(img_data)
937

Varun Agrawal's avatar
Varun Agrawal committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
956
957
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
Varun Agrawal's avatar
Varun Agrawal committed
958
959
960
961
962
963
964
965
966
967
968
969

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
970
971
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data, img))
Varun Agrawal's avatar
Varun Agrawal committed
972
973
974
975
976

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

977
    def test_ndarray_bad_types_to_pil_image(self):
978
        trans = transforms.ToPILImage()
979
        with self.assertRaises(TypeError):
980
981
982
983
984
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
985
986
987
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

988
989
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
990
991
        random_state = random.getstate()
        random.seed(42)
992
993
994
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

995
        num_samples = 250
996
        num_vertical = 0
997
        for _ in range(num_samples):
998
999
1000
1001
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1002
1003
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1004
        self.assertGreater(p_value, 0.0001)
1005

1006
1007
1008
1009
1010
1011
1012
1013
1014
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1015
        self.assertGreater(p_value, 0.0001)
1016

1017
1018
1019
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1020
1021
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1022
1023
        random_state = random.getstate()
        random.seed(42)
1024
1025
1026
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1027
        num_samples = 250
1028
        num_horizontal = 0
1029
        for _ in range(num_samples):
1030
1031
1032
1033
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1034
1035
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1036
        self.assertGreater(p_value, 0.0001)
1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1047
        self.assertGreater(p_value, 0.0001)
1048

1049
1050
1051
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1052
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1065
            self.assertTrue(samples_from_standard_normal(normalized))
1066
1067
        random.setstate(random_state)

1068
1069
1070
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1071
1072
1073
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1074
        self.assertTrue(torch.equal(tensor, tensor_inplace))
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
        target = F.normalize(img, mean, std).numpy()

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
        assert_array_almost_equal(target, result1.numpy())
        assert_array_almost_equal(target, result2.numpy())

1103
1104
1105
1106
1107
1108
1109
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1110
        y_pil = F.adjust_brightness(x_pil, 1)
1111
        y_np = np.array(y_pil)
1112
        self.assertTrue(np.allclose(y_np, x_np))
1113
1114

        # test 1
1115
        y_pil = F.adjust_brightness(x_pil, 0.5)
1116
1117
1118
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1119
        self.assertTrue(np.allclose(y_np, y_ans))
1120
1121

        # test 2
1122
        y_pil = F.adjust_brightness(x_pil, 2)
1123
1124
1125
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1126
        self.assertTrue(np.allclose(y_np, y_ans))
1127
1128
1129
1130
1131
1132
1133
1134

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1135
        y_pil = F.adjust_contrast(x_pil, 1)
1136
        y_np = np.array(y_pil)
1137
        self.assertTrue(np.allclose(y_np, x_np))
1138
1139

        # test 1
1140
        y_pil = F.adjust_contrast(x_pil, 0.5)
1141
1142
1143
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1144
        self.assertTrue(np.allclose(y_np, y_ans))
1145
1146

        # test 2
1147
        y_pil = F.adjust_contrast(x_pil, 2)
1148
1149
1150
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1151
        self.assertTrue(np.allclose(y_np, y_ans))
1152

Francisco Massa's avatar
Francisco Massa committed
1153
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
1154
1155
1156
1157
1158
1159
1160
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1161
        y_pil = F.adjust_saturation(x_pil, 1)
1162
        y_np = np.array(y_pil)
1163
        self.assertTrue(np.allclose(y_np, x_np))
1164
1165

        # test 1
1166
        y_pil = F.adjust_saturation(x_pil, 0.5)
1167
1168
1169
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1170
        self.assertTrue(np.allclose(y_np, y_ans))
1171
1172

        # test 2
1173
        y_pil = F.adjust_saturation(x_pil, 2)
1174
1175
1176
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1177
        self.assertTrue(np.allclose(y_np, y_ans))
1178
1179
1180
1181
1182
1183
1184
1185

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
1186
1187
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
1188
1189
1190

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
1191
        y_pil = F.adjust_hue(x_pil, 0)
1192
1193
1194
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1195
        self.assertTrue(np.allclose(y_np, y_ans))
1196
1197

        # test 1
1198
        y_pil = F.adjust_hue(x_pil, 0.25)
1199
1200
1201
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1202
        self.assertTrue(np.allclose(y_np, y_ans))
1203
1204

        # test 2
1205
        y_pil = F.adjust_hue(x_pil, -0.25)
1206
1207
1208
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1209
        self.assertTrue(np.allclose(y_np, y_ans))
1210
1211
1212
1213
1214
1215
1216
1217

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1218
        y_pil = F.adjust_gamma(x_pil, 1)
1219
        y_np = np.array(y_pil)
1220
        self.assertTrue(np.allclose(y_np, x_np))
1221
1222

        # test 1
1223
        y_pil = F.adjust_gamma(x_pil, 0.5)
1224
        y_np = np.array(y_pil)
1225
        y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
1226
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1227
        self.assertTrue(np.allclose(y_np, y_ans))
1228
1229

        # test 2
1230
        y_pil = F.adjust_gamma(x_pil, 2)
1231
        y_np = np.array(y_pil)
1232
        y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
1233
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1234
        self.assertTrue(np.allclose(y_np, y_ans))
1235
1236
1237
1238
1239
1240
1241
1242

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1243
1244
1245
1246
1247
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1260
            self.assertEqual(y_pil.mode, x_pil.mode)
1261
1262

            y_pil_2 = color_jitter(x_pil_2)
1263
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1264

1265
1266
1267
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1268
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1281
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1292
1293
1294
1295
        self.assertTrue(np.allclose(cov / num_samples, np.identity(1), rtol=2e-3),
                        "cov not close to 1")
        self.assertTrue(np.allclose(mean / num_samples, 0, rtol=1e-3),
                        "mean not close to 0")
ekka's avatar
ekka committed
1296

1297
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1298
1299
        whitening.__repr__()

1300
1301
1302
1303
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

vfdev's avatar
vfdev committed
1304
        with self.assertRaisesRegex(TypeError, r"img should be PIL Image"):
1305
1306
1307
1308
1309
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1310
        self.assertEqual(result.size, (100, 100))
1311
        r, c, ch = np.where(result)
1312
1313
1314
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1315
1316

        result = F.rotate(img, 45, expand=True)
1317
        self.assertEqual(result.size, (142, 142))
1318
        r, c, ch = np.where(result)
1319
1320
1321
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1322
1323

        result = F.rotate(img, 45, center=(40, 40))
1324
        self.assertEqual(result.size, (100, 100))
1325
        r, c, ch = np.where(result)
1326
1327
1328
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1329
1330
1331
1332

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1333
        self.assertTrue(np.all(np.array(result_a) == np.array(result_b)))
1334

Philip Meier's avatar
Philip Meier committed
1335
1336
1337
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1338
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1355
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1356
1357
1358
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1359
1360
1361
1362
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1363
1364
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1376
            s_rad = [math.radians(sh_) for sh_ in sh]
1377
1378
1379
1380
1381
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1382
            # 1) Check transformation matrix:
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1408
1409
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1410
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1411
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1412
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1413
1414
1415
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1416
1417
1418
1419
1420
1421
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1422
1423
1424
1425
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1426
            self.assertEqual(result.size, pil_img.size)
1427
1428
1429
1430
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1431
1432
1433
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1434
1435
1436

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1437
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1438
1439
1440

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1441
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1442
1443
1444

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1445
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1446
1447

        # Test shear
ptrblck's avatar
ptrblck committed
1448
        sh = [45.0, 25.0]
1449
1450
1451
1452
1453
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
1454
                for s in [0.75, 0.98, 1.0, 1.2, 1.4]:
1455
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1456
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1467
        self.assertTrue(angle > -10 and angle < 10)
1468
1469
1470

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1471
        self.assertTrue(angle > -10 and angle < 10)
1472

1473
1474
1475
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1495
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1496
1497
1498
1499

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1500
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1501
1502
1503
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1504
1505
1506
1507
1508
1509
1510
1511
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1512
1513
1514
1515
1516

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
1517
        self.assertIn("Image.BILINEAR", t.__repr__())
1518

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1534
1535
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1536
1537
1538
1539
1540
1541
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1542
1543
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1544
1545
1546
1547
1548
1549
1550
1551
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1552
1553
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1554
1555
1556
1557
1558
1559
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1560
1561
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1562
1563
1564
1565
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1566
1567
1568
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1588
1589
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1590
1591
1592
1593
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1594
        self.assertGreater(p_value, 0.0001)
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1615
        self.assertGreater(p_value, 0.0001)
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1629
1630
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1631
1632
1633
1634
1635
1636
1637
1638
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1639
1640
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1641
1642
1643
1644
1645
1646
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1647
1648
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1649
1650
1651
1652
1653
1654
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1655
1656
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1657
1658
        np.testing.assert_equal(gray_np, gray_np_3)

1659
1660
1661
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
    def test_gaussian_blur_asserts(self):
        np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
        img = F.to_pil_image(np_img, "RGB")

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3])

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3, 3, 3])
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([3, 3, 3])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [4, 4])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([4, 4])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [-3, -3])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([-3, -3])

        with self.assertRaisesRegex(ValueError, r"If sigma is a sequence, its length should be 2"):
            F.gaussian_blur(img, 3, [1, 1, 1])
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, [1, 1, 1])

        with self.assertRaisesRegex(ValueError, r"sigma should have positive values"):
            F.gaussian_blur(img, 3, -1.0)
        with self.assertRaisesRegex(ValueError, r"If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, -1.0)

        with self.assertRaisesRegex(TypeError, r"kernel_size should be int or a sequence of integers"):
            F.gaussian_blur(img, "kernel_size_string")
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur("kernel_size_string")

        with self.assertRaisesRegex(TypeError, r"sigma should be either float or sequence of floats"):
            F.gaussian_blur(img, 3, "sigma_string")
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, "sigma_string")

1704

1705
1706
if __name__ == '__main__':
    unittest.main()