test_models.py 34 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
from torchvision import models
20
21
from torchvision.models._api import find_model, list_models

22

23
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
24
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
25
26


27
28
def list_model_fns(module):
    return [find_model(name) for name in list_models(module)]
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


76
77
78
79
80
81
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
82
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
83
84
85
86
87
88
89
90
91
92
93
94
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


95
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
96
97
98
99
100
101
102
103
104
105
106
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
107
        print(f"Accepting updated output for {filename}:\n\n{output}")
108
109
110
111
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
112
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
113
114
    else:
        expected = torch.load(expected_file)
115
116
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
117
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
118
119


120
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
121
122
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

123
124
125
126
127
128
129
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
130
131
132

    sm = torch.jit.script(nn_module)

133
134
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
135
            eager_out = nn_module(*args)
136

137
    with torch.no_grad(), freeze_rng_state():
138
139
140
141
142
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
143
144
145
146
147
148
149
150

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
151
152


153
def _check_fx_compatible(model, inputs, eager_out=None):
154
    model_fx = torch.fx.symbolic_trace(model)
155
156
157
158
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
159
160


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


190
191
192
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
193
script_model_unwrapper = {
194
195
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
196
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
197
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
200
    "maskrcnn_resnet50_fpn": lambda x: x[1],
201
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
202
203
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
204
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
205
    "ssd300_vgg16": lambda x: x[1],
206
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
207
    "fcos_resnet50_fpn": lambda x: x[1],
208
}
209
210


211
212
213
214
215
216
217
218
219
220
221
222
223
224
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
225
226
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
227
    "deeplabv3_mobilenet_v3_large",
228
229
    "fcn_resnet50",
    "fcn_resnet101",
230
    "lraspp_mobilenet_v3_large",
231
    "maskrcnn_resnet50_fpn",
232
    "maskrcnn_resnet50_fpn_v2",
233
    "keypointrcnn_resnet50_fpn",
234
235
)

236
237
238
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
239
quantized_flaky_models = ("inception_v3", "resnet50")
240

241

242
243
244
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
245
246
247
248
249
250
251
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
252
    },
253
254
255
256
257
258
259
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
260
261
262
263
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
264
        "box_score_thresh": 0.17,
265
        "input_shape": (3, 224, 224),
266
    },
267
268
269
270
271
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
272
    },
273
274
275
276
277
278
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
279
280
281
282
283
284
285
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
286
287
288
289
290
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
291
    },
292
293
294
295
296
297
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
298
299
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
300
    },
301
302
303
304
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
305
    },
306
307
308
309
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
310
311
312
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
313
314
315
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
316
317
318
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
319
}
320
321
322
323
324
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
325
    "resnext101_64x4d",
326
327
328
329
330
331
332
333
334
335
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
336
    "swin_t",
337
338
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
339
340
341
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
342
343
344
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
345
346


347
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
348
skipped_big_models = {
349
350
351
352
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
    "mvit_v1_b": {("Windows", "cuda")},
    "mvit_v2_s": {("Windows", "cuda")},
353
354
}

355
356
357
358
359
360
361
362
363
364
365

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


366
367
368
369
370
371
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
372
373
374
375
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
376
377
378
379
380
381
382
383
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
384
385
386
387
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
388
389
390
391
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
392
393
394
395
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
412
413
414
415
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
416
417
418
}


Anirudh's avatar
Anirudh committed
419
420
421
422
423
424
425
426
427
428
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


429
430
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
431
432
433
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

434
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
435
    params = model1.state_dict()
436
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
437
438
439
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
440
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
441

442
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
443
444
445
446
447
448
449
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

450
451
452
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
453

454
455
456
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
457
458
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
459
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
460
461
462
463
464
465
466
467
468
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
469
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
470
471
472
473
474
475
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


476
477
478
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
479
480
481
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
482
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
483

484
    model = model_fn(norm_layer=get_gn)
485
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
486
487
488
489
490
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
491
492
493
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
494
495
496
497
498
499
500
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
501
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
502
503
504


def test_fasterrcnn_double():
505
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
506
507
508
509
510
511
512
513
514
515
516
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
517
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
518
519
520
521


def test_googlenet_eval():
    kwargs = {}
522
523
524
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
525
526
527
528
529
530
531
532
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
533
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
534
535
536
537
538
539
540
541
542
543


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

544
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
545
546
547
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
548
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
549
550
551
552
553
554
555
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
556
        out = model(model_input)
557

Anirudh's avatar
Anirudh committed
558
    checkOut(out)
559

560
561
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
562
563
564
565
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
566

Anirudh's avatar
Anirudh committed
567
    checkOut(out_cpu)
568

569
570
    _check_input_backprop(model, [x])

571

Anirudh's avatar
Anirudh committed
572
def test_generalizedrcnn_transform_repr():
573

Anirudh's avatar
Anirudh committed
574
575
576
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
577

578
579
580
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
581

Anirudh's avatar
Anirudh committed
582
    # Check integrity of object __repr__ attribute
583
584
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
585
586
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
587
588
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
589
590


591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


620
@pytest.mark.parametrize("model_fn", list_model_fns(models))
621
@pytest.mark.parametrize("dev", cpu_and_gpu())
622
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
623
624
    set_rng_seed(0)
    defaults = {
625
626
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
627
    }
628
    model_name = model_fn.__name__
629
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
630
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
631
    kwargs = {**defaults, **_model_params.get(model_name, {})}
632
    num_classes = kwargs.get("num_classes")
633
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
634

635
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
636
637
638
639
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
640
    _assert_expected(out.cpu(), model_name, prec=1e-3)
641
    assert out.shape[-1] == num_classes
642
643
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
644

645
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
646
647
648
649
650
651
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
652

653
654
    _check_input_backprop(model, x)

655

656
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
657
@pytest.mark.parametrize("dev", cpu_and_gpu())
658
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
659
660
    set_rng_seed(0)
    defaults = {
661
        "num_classes": 10,
662
        "weights_backbone": None,
663
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
664
    }
665
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
666
    kwargs = {**defaults, **_model_params.get(model_name, {})}
667
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
668

669
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
670
671
672
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
673
    out = model(x)
Anirudh's avatar
Anirudh committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
688
689
690
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
691
692
693
694
            return False  # Partial validation performed

        return True  # Full validation performed

695
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
696

697
698
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
699

700
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
701
        with torch.cuda.amp.autocast():
702
            out = model(x)
Anirudh's avatar
Anirudh committed
703
704
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
705
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
706
707

    if not full_validation:
708
        msg = (
709
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
710
711
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
712
            "significant changes to the codebase."
713
        )
Anirudh's avatar
Anirudh committed
714
715
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
716

717
718
    _check_input_backprop(model, x)

719

720
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
721
@pytest.mark.parametrize("dev", cpu_and_gpu())
722
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
723
724
    set_rng_seed(0)
    defaults = {
725
        "num_classes": 50,
726
        "weights_backbone": None,
727
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
728
    }
729
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
730
    kwargs = {**defaults, **_model_params.get(model_name, {})}
731
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
732

733
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
734
735
736
737
738
739
740
741
742
743
744
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
745
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
760
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
783
784
785
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
786
787
788
789
790
791
792
793
794
795

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
796
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
797

798
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
799
800
801
802
803
804
805
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
806
        msg = (
807
            f"The output of {test_detection_model.__name__} could only be partially validated. "
808
809
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
810
            "significant changes to the codebase."
811
        )
Anirudh's avatar
Anirudh committed
812
813
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
814

815
816
    _check_input_backprop(model, model_input)

817

818
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
819
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
820
    set_rng_seed(0)
821
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
822
823
824
825
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
826
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
827
828
829
        model(x)

    # validate type
830
    targets = [{"boxes": 0.0}]
831
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
832
833
834
835
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
836
        targets = [{"boxes": boxes}]
837
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
838
839
840
841
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
842
    targets = [{"boxes": boxes}]
843
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
844
        model(x, targets=targets)
845

846

847
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
848
@pytest.mark.parametrize("dev", cpu_and_gpu())
849
def test_video_model(model_fn, dev):
850
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
851
852
    # the default input shape is
    # bs * num_channels * clip_len * h *w
853
854
855
856
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
857
    model_name = model_fn.__name__
858
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
859
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
860
861
862
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
863
    # test both basicblock and Bottleneck
864
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
865
866
867
868
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
869
    _assert_expected(out.cpu(), model_name, prec=1e-5)
870
    assert out.shape[-1] == num_classes
871
872
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
873
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
874

875
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
876
877
        with torch.cuda.amp.autocast():
            out = model(x)
878
879
880
881
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
882

883
884
    _check_input_backprop(model, x)

885

886
887
888
889
890
891
892
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
893
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
894
def test_quantized_classification_model(model_fn):
895
    set_rng_seed(0)
896
    defaults = {
897
        "num_classes": 5,
898
899
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
900
    }
901
    model_name = model_fn.__name__
902
    kwargs = {**defaults, **_model_params.get(model_name, {})}
903
    input_shape = kwargs.pop("input_shape")
904
905

    # First check if quantize=True provides models that can run with input data
906
    model = model_fn(**kwargs)
907
    model.eval()
908
    x = torch.rand(input_shape)
909
910
911
    out = model(x)

    if model_name not in quantized_flaky_models:
912
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
913
        assert out.shape[-1] == 5
914
915
916
917
918
919
920
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
921

922
    kwargs["quantize"] = False
923
    for eval_mode in [True, False]:
924
        model = model_fn(**kwargs)
925
926
        if eval_mode:
            model.eval()
927
            model.qconfig = torch.ao.quantization.default_qconfig
928
929
        else:
            model.train()
930
            model.qconfig = torch.ao.quantization.default_qat_qconfig
931

932
        model.fuse_model(is_qat=not eval_mode)
933
        if eval_mode:
934
            torch.ao.quantization.prepare(model, inplace=True)
935
        else:
936
            torch.ao.quantization.prepare_qat(model, inplace=True)
937
938
            model.eval()

939
        torch.ao.quantization.convert(model, inplace=True)
940
941


942
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
943
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
944
    model_name = model_fn.__name__
945
946
947
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
948
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
949
950
951
952
953

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


954
@needs_cuda
955
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
956
@pytest.mark.parametrize("scripted", (False, True))
957
def test_raft(model_fn, scripted):
958
959
960
961
962
963
964
965
966

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

967
    model = model_fn(corr_block=corr_block).eval().to("cuda")
968
969
970
971
972
973
974
975
976
977
978
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
979
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
980
981


982
if __name__ == "__main__":
983
    pytest.main([__file__])