"vscode:/vscode.git/clone" did not exist on "df5dd3c68ec7007e4b3a27907f4d954f1c7d511d"
server.rs 103 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
11
use crate::{default_tool_prompt, ChatTokenizeResponse, VertexInstance};
12
use crate::{
13
14
15
16
17
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamResponse, TextMessage, Token,
    TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
18
19
20
21
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
22
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
24
    VertexResponse,
25
};
drbh's avatar
drbh committed
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
drbh's avatar
drbh committed
27
use crate::{ModelInfo, ModelsInfo};
28
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
30
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
31
use axum::response::sse::{Event, KeepAlive, Sse};
32
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::routing::{get, post};
34
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
35
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
36
use futures::stream::StreamExt;
37
use futures::stream::{FuturesOrdered, FuturesUnordered};
38
use futures::Stream;
drbh's avatar
drbh committed
39
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
40
41
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
42
use http::header::AUTHORIZATION;
43
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
44
use serde_json::Value;
45
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
46
47
48
49
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
50
use thiserror::Error;
Nicolas Patry's avatar
Nicolas Patry committed
51
use tokenizers::processors::template::TemplateProcessing;
Olivier Dehaene's avatar
Olivier Dehaene committed
52
use tokenizers::Tokenizer;
53
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
54
use tokio::signal;
55
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
56
use tokio::time::Instant;
57
use tower_http::cors::{AllowOrigin, CorsLayer};
58
use tracing::{info_span, instrument, Instrument};
59
60
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
61

62
63
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
83
)]
84
#[instrument(skip(infer, req))]
85
async fn compat_generate(
86
    Extension(default_return_full_text): Extension<bool>,
87
    infer: Extension<Infer>,
88
    compute_type: Extension<ComputeType>,
89
    Json(mut req): Json<CompatGenerateRequest>,
90
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
91
92
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
93
        req.parameters.return_full_text = Some(default_return_full_text)
94
95
    }

96
97
    // switch on stream
    if req.stream {
98
        Ok(generate_stream(infer, compute_type, Json(req.into()))
99
100
101
            .await
            .into_response())
    } else {
102
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
103
        // wrap generation inside a Vec to match api-inference
104
        Ok((headers, Json(vec![generation])).into_response())
105
106
107
    }
}

108
109
/// Text Generation Inference endpoint info
#[utoipa::path(
110
111
112
113
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
114
115
)]
#[instrument]
116
117
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
118
119
}

drbh's avatar
drbh committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<ChatRequest>,
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

    let ChatRequest {
        model,
        max_tokens,
        messages,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
        temperature,
        response_format,
168
        guideline,
169
170
171
172
        ..
    } = req;

    let tool_prompt = tool_prompt.unwrap_or_default();
drbh's avatar
drbh committed
173
    let (inputs, _grammar, _using_tools) = prepare_chat_input(
174
175
176
177
178
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
179
        guideline,
180
181
182
183
184
        messages,
    )?;

    let generate_request = GenerateRequest {
        inputs,
185
        add_special_tokens: false,
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        parameters: GenerateParameters {
            best_of: None,
            temperature,
            repetition_penalty: None,
            frequency_penalty: None,
            top_k: None,
            top_p: None,
            typical_p: None,
            do_sample: true,
            max_new_tokens: max_tokens,
            return_full_text: None,
            stop: stop.unwrap_or_default(),
            truncate: None,
            watermark: false,
            details: false,
            decoder_input_details: !stream,
            seed,
            top_n_tokens: None,
            grammar: _grammar,
            adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
        },
    };

    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

247
#[utoipa::path(
248
249
250
251
252
253
254
255
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
256
)]
Nicolas Patry's avatar
Nicolas Patry committed
257
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
258
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
259
260
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
261
262
263
264
265
266
267
268
269
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
270
271
}

272
273
/// Generate tokens
#[utoipa::path(
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
289
)]
290
#[instrument(
291
292
skip_all,
fields(
293
parameters = ? req.parameters,
294
295
296
297
298
299
300
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
301
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
302
async fn generate(
303
    infer: Extension<Infer>,
304
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
305
    Json(req): Json<GenerateRequest>,
306
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
307
    let span = tracing::Span::current();
308
309
310
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

311
pub(crate) async fn generate_internal(
312
313
314
315
316
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
317
    let start_time = Instant::now();
318
    metrics::counter!("tgi_request_count").increment(1);
319

320
321
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
322

323
    let compute_characters = req.inputs.chars().count();
324
    let mut add_prompt = None;
325
326
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
327
328
    }

Nicolas Patry's avatar
Nicolas Patry committed
329
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
330
331

    // Inference
332
    let (response, best_of_responses) = match req.parameters.best_of {
333
        Some(best_of) if best_of > 1 => {
334
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
335
336
            (response, Some(best_of_responses))
        }
337
        _ => (infer.generate(req).await?, None),
338
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
339

OlivierDehaene's avatar
OlivierDehaene committed
340
    // Token details
341
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
342
    let details = match details {
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
357
                            finish_reason: response.generated_text.finish_reason,
358
359
360
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
361
                            top_tokens: response.top_tokens,
362
363
364
365
366
367
368
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
369
                finish_reason: response.generated_text.finish_reason,
370
371
372
373
374
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
375
                top_tokens: response.top_tokens,
376
377
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
378
379
380
        false => None,
    };

381
382
383
384
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
385
386
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
387

388
389
390
391
392
393
394
395
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

396
397
    // Headers
    let mut headers = HeaderMap::new();
398
    headers.insert("x-compute-type", compute_type.parse().unwrap());
399
400
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
401
        total_time.as_secs_f64().to_string().parse().unwrap(),
402
403
404
405
406
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
407
408
409
410
411
412
413
414
415
416
417
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
418
    );
419
420
421
422
423
424
425
426
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
427
428
429
430
431
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
432

433
    // Metrics
434
435
436
437
438
439
440
441
442
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
443

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
444
    // Send response
445
446
447
448
449
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

450
451
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
452

453
    let response = GenerateResponse {
454
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
455
        details,
456
    };
457
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
458
459
}

Yannic Kilcher's avatar
Yannic Kilcher committed
460
/// Generate a stream of token using Server-Sent Events
461
#[utoipa::path(
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
482
)]
483
#[instrument(
484
485
skip_all,
fields(
486
parameters = ? req.parameters,
487
488
489
490
491
492
493
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
494
495
)]
async fn generate_stream(
496
    Extension(infer): Extension<Infer>,
497
    Extension(compute_type): Extension<ComputeType>,
498
    Json(req): Json<GenerateRequest>,
499
500
501
502
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
503
    let span = tracing::Span::current();
504
505
506
507
508
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
509
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
510
511
512
513
514
515
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
516
    ComputeType(compute_type): ComputeType,
517
518
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
519
    span: tracing::Span,
520
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
521
    let start_time = Instant::now();
522
    metrics::counter!("tgi_request_count").increment(1);
523

524
    tracing::debug!("Input: {}", req.inputs);
525

526
    let compute_characters = req.inputs.chars().count();
527
528

    let mut headers = HeaderMap::new();
529
    headers.insert("x-compute-type", compute_type.parse().unwrap());
530
531
532
533
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
534
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
535

536
537
538
539
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
540
541

        let mut add_prompt = None;
542
543
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
544
        }
545
        let details = req.parameters.details;
546

547
        let best_of = req.parameters.best_of.unwrap_or(1);
548
549
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
550
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
551
552
            tracing::error!("{err}");
            yield Ok(Event::from(err));
553
        } else if req.parameters.decoder_input_details {
554
            let err = InferError::from(ValidationError::PrefillDetailsStream);
555
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
556
557
558
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
559
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
560
                // Keep permit as long as generate_stream lives
561
                Ok((_permit, input_length, response_stream)) => {
562
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
563
                    let mut response_stream = Box::pin(response_stream);
564
565
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
566
                        index += 1;
567
568
569
570
571
572
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
573
574
575
576
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
577
578
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

579
580
                                        // StreamResponse
                                        let stream_token = StreamResponse {
581
                                            index,
582
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
583
                                            top_tokens,
584
585
586
                                            generated_text: None,
                                            details: None,
                                        };
587
588
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
589
                                    }
590
591
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
592
                                        token,
593
594
595
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
596
                                        top_tokens,
597
598
599
600
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
601
                                                finish_reason: generated_text.finish_reason,
602
603
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
604
                                                input_length,
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
625
626
627
628
629
630
631
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
632
633
634
635
636
637
638
639
640

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

641
642
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
643

644
                                        let stream_token = StreamResponse {
645
                                            index,
646
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
647
                                            top_tokens,
648
649
650
651
                                            generated_text: Some(output_text),
                                            details
                                        };

652
653
654

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
655
656
                                        break;
                                    }
657
658
                                }
                            }
659
660
661
662
663
664
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
665
666
                        }
                    }
667
668
669
670
671
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
672
                }
673
674
675
676
677
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
678
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
679
                tracing::error!("{err}");
680
                yield Ok(Event::from(err));
681
682
683
684
            }
        }
    };

685
686
687
    (headers, stream)
}

688
689
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
690
691
692
693
694
695
696
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
697
698
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
699
700
701
702
703
704
705
706
707
708
709
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
710
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
711
712
713
714
715
716
717
718
719
720
721
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
722
723
724
725
726
727
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
728
    let span = tracing::Span::current();
729
    metrics::counter!("tgi_request_count").increment(1);
730

731
    let CompletionRequest {
732
        model,
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
748
749
750

    // if suffix is present throw an error
    if req.suffix.is_some() {
751
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
752
753
754
755
756
757
758
759
760
761
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

762
    if req.prompt.0.len() > info.max_client_batch_size {
763
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
778
        .0
779
780
781
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
782
            add_special_tokens: true,
783
784
            parameters: GenerateParameters {
                best_of: None,
785
                temperature,
786
787
788
789
790
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
791
                do_sample,
792
793
                max_new_tokens,
                return_full_text: None,
794
                stop: stop.clone(),
795
796
797
798
799
800
801
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
802
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
803
804
805
806
807
808
809
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
810
811

    if stream {
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
                    let message = match stream_token.details {
                        Some(details) => {
                            let completion_tokens = details.generated_tokens;
                            let prompt_tokens = details.input_length;
                            let total_tokens = prompt_tokens + completion_tokens;

                            Completion::Final(CompletionFinal {
                                id: String::new(),
                                created: current_time,
                                model: model_id.clone(),
                                system_fingerprint: system_fingerprint.clone(),
                                choices: vec![CompletionComplete {
                                    finish_reason: details.finish_reason.to_string(),
                                    index: index as u32,
                                    logprobs: None,
                                    text: stream_token.token.text,
                                }],
                                usage: Usage {
                                    prompt_tokens,
                                    completion_tokens,
                                    total_tokens,
                                },
                            })
                        }
                        None => Completion::Chunk(Chunk {
                            id: String::new(),
857
858
                            created: current_time,
                            choices: vec![CompletionComplete {
859
                                finish_reason: String::new(),
860
861
862
863
864
865
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],
                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
866
867
868
869
870
                        }),
                    };

                    event
                        .json_data(message)
871
                        .unwrap_or_else(|_e| Event::default())
872
873
874
875
876
877
878
879
880
881
882
883
884
885
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
886

887
888
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
919
                )
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
938

939
940
941
942
943
944
945
946
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

972
973
974
975
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

976
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
977
978
979
980
981
982
983
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1078
                    finish_reason: details.finish_reason.format(true),
1079
1080
1081
1082
1083
1084
1085
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1086

1087
        let response = Completion::Final(CompletionFinal {
1088
1089
1090
1091
1092
1093
1094
1095
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1096
            choices,
1097
            usage: Usage {
1098
1099
1100
                prompt_tokens,
                completion_tokens,
                total_tokens,
1101
            },
1102
        });
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1120
1121
1122
1123
        Ok((headers, Json(response)).into_response())
    }
}

1124
1125
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1146
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1158
1159
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1160
    Extension(compute_type): Extension<ComputeType>,
1161
1162
1163
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1164
    let span = tracing::Span::current();
1165
    metrics::counter!("tgi_request_count").increment(1);
1166
    let ChatRequest {
1167
        model,
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1178
        temperature,
drbh's avatar
drbh committed
1179
        response_format,
1180
        guideline,
1181
1182
1183
1184
1185
1186
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
drbh's avatar
drbh committed
1187
1188
1189
    let tool_prompt = tool_prompt
        .filter(|s| !s.is_empty())
        .unwrap_or_else(default_tool_prompt);
1190
    let stop = stop.unwrap_or_default();
1191
1192
1193
1194
1195
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
drbh's avatar
drbh committed
1196
    let (inputs, grammar, using_tools) = prepare_chat_input(
1197
1198
1199
1200
1201
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
1202
        guideline,
1203
1204
        messages,
    )?;
drbh's avatar
drbh committed
1205

1206
1207
1208
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
1209
        add_special_tokens: false,
1210
1211
        parameters: GenerateParameters {
            best_of: None,
1212
            temperature,
1213
            repetition_penalty,
1214
            frequency_penalty: req.frequency_penalty,
1215
            top_k: None,
1216
            top_p: req.top_p,
1217
            typical_p: None,
1218
            do_sample,
1219
1220
            max_new_tokens,
            return_full_text: None,
1221
            stop,
1222
1223
1224
            truncate: None,
            watermark: false,
            details: true,
1225
            decoder_input_details: !stream,
1226
            seed,
1227
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1228
            grammar,
1229
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1248
1249
1250
1251
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1252
            // replace the content with the tool calls if grammar is present
drbh's avatar
drbh committed
1253
            let (content, tool_calls) = if using_tools {
drbh's avatar
drbh committed
1254
1255
                (None, Some(vec![stream_token.token.text]))
            } else {
1256
1257
1258
1259
1260
1261
1262
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1263
1264
            };

1265
            event
1266
1267
1268
1269
1270
1271
1272
1273
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
1274
                        stream_token.details.map(|d| d.finish_reason.format(true)),
1275
                    ),
1276
                ))
1277
1278
1279
1280
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1281
1282
        };

1283
1284
1285
1286
1287
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1288
            span,
1289
1290
        )
        .await;
1291
1292
1293
1294
1295

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1296
1297
1298
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1299
1300
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1301
1302
1303
1304
1305
1306

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1307
        let (tool_calls, output) = if using_tools {
1308
1309
1310
1311
1312
1313
1314
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1332
            let tool_calls = vec![ToolCall {
1333
                id: "0".to_string(),
drbh's avatar
drbh committed
1334
1335
1336
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1337
1338
                    name,
                    arguments,
drbh's avatar
drbh committed
1339
                },
1340
1341
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1342
1343
1344
        } else {
            (None, Some(generation.generated_text))
        };
1345
        // build the complete response object with the full text
1346
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1347
1348
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1349
            output,
1350
1351
1352
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1353
            tool_calls,
1354
        ));
1355
1356
1357
1358

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1359
1360
}

drbh's avatar
drbh committed
1361
1362
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1395
    let span = tracing::Span::current();
1396
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

1409
1410
1411
1412
1413
1414
    // Prepare futures for all instances
    let mut futures = Vec::with_capacity(req.instances.len());

    for instance in req.instances.iter() {
        let generate_request = match instance {
            VertexInstance::Generate(instance) => GenerateRequest {
drbh's avatar
drbh committed
1415
                inputs: instance.inputs.clone(),
1416
                add_special_tokens: true,
drbh's avatar
drbh committed
1417
1418
1419
1420
1421
1422
1423
1424
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
            },
            VertexInstance::Chat(instance) => {
                let ChatRequest {
                    model,
                    max_tokens,
                    messages,
                    seed,
                    stop,
                    stream,
                    tools,
                    tool_choice,
                    tool_prompt,
                    temperature,
                    response_format,
                    guideline,
                    presence_penalty,
                    frequency_penalty,
                    top_p,
                    top_logprobs,
                    ..
                } = instance.clone();

                let repetition_penalty = presence_penalty.map(|x| x + 2.0);
                let max_new_tokens = max_tokens.or(Some(100));
                let tool_prompt = tool_prompt
                    .filter(|s| !s.is_empty())
                    .unwrap_or_else(default_tool_prompt);
                let stop = stop.unwrap_or_default();
                // enable greedy only when temperature is 0
                let (do_sample, temperature) = match temperature {
                    Some(temperature) if temperature == 0.0 => (false, None),
                    other => (true, other),
                };
                let (inputs, grammar, _using_tools) = match prepare_chat_input(
                    &infer,
                    response_format,
                    tools,
                    tool_choice,
                    &tool_prompt,
                    guideline,
                    messages,
                ) {
                    Ok(result) => result,
                    Err(e) => {
                        return Err((
                            StatusCode::BAD_REQUEST,
                            Json(ErrorResponse {
                                error: format!("Failed to prepare chat input: {}", e),
                                error_type: "Input preparation error".to_string(),
                            }),
                        ));
                    }
                };
drbh's avatar
drbh committed
1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
                GenerateRequest {
                    inputs: inputs.to_string(),
                    add_special_tokens: false,
                    parameters: GenerateParameters {
                        best_of: None,
                        temperature,
                        repetition_penalty,
                        frequency_penalty,
                        top_k: None,
                        top_p,
                        typical_p: None,
                        do_sample,
                        max_new_tokens,
                        return_full_text: None,
                        stop,
                        truncate: None,
                        watermark: false,
                        details: true,
                        decoder_input_details: !stream,
                        seed,
                        top_n_tokens: top_logprobs,
                        grammar,
                        adapter_id: model.filter(|m| *m != "tgi").map(String::from),
                    },
                }
drbh's avatar
drbh committed
1504
            }
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
        };

        let infer_clone = infer.clone();
        let compute_type_clone = compute_type.clone();
        let span_clone = span.clone();

        futures.push(async move {
            generate_internal(
                Extension(infer_clone),
                compute_type_clone,
                Json(generate_request),
                span_clone,
            )
            .await
            .map(|(_, Json(generation))| generation.generated_text)
            .map_err(|_| {
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Incomplete generation".into(),
                        error_type: "Incomplete generation".into(),
                    }),
                )
            })
        });
    }

    // execute all futures in parallel, collect results, returning early if any error occurs
    let results = futures::future::join_all(futures).await;
    let predictions: Result<Vec<_>, _> = results.into_iter().collect();
    let predictions = predictions?;
drbh's avatar
drbh committed
1536
1537
1538
1539
1540

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1541
1542
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1553
1554
1555
1556
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1557
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1558
1559
1560
1561
1562
1563
1564
1565
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1566
1567
1568
1569
1570
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1571
1572
1573
1574
1575
1576
1577
1578
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1579
        Ok(Json(TokenizeResponse(tokens)))
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1591
1592
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1593
1594
1595
1596
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1597
1598
1599
1600
1601
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1602
1603
1604
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
drbh's avatar
drbh committed
1618
openai_get_model_info,
Nicolas Patry's avatar
Nicolas Patry committed
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
drbh's avatar
drbh committed
1671
ModelInfo,
Nicolas Patry's avatar
Nicolas Patry committed
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1691
1692
1693
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1694
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1695
    max_concurrent_requests: usize,
1696
    max_best_of: usize,
1697
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1698
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1699
    max_input_tokens: usize,
1700
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1701
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1702
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1703
1704
1705
1706
1707
1708
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1709
    ngrok: bool,
1710
1711
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1712
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1713
    disable_grammar_support: bool,
1714
    max_client_batch_size: usize,
1715
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1716
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1727

Nicolas Patry's avatar
Nicolas Patry committed
1728
1729
1730
1731
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1732

Nicolas Patry's avatar
Nicolas Patry committed
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1775
                }
Nicolas Patry's avatar
Nicolas Patry committed
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1814

Nicolas Patry's avatar
Nicolas Patry committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        let mut tokenizer = Tokenizer::from_file(filename).ok();
        if let Some(tokenizer) = &mut tokenizer {
            if let Some(class) = &tokenizer_config.tokenizer_class {
                if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
                    if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
                        tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
                        tokenizer.with_post_processor(post_processor);
                    }
OlivierDehaene's avatar
OlivierDehaene committed
1868
1869
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
        }
        tokenizer
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1904

Nicolas Patry's avatar
Nicolas Patry committed
1905
1906
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1986
            }
Nicolas Patry's avatar
Nicolas Patry committed
1987
            Err(e) => {
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
2000
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
2001
2002
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
2049
2050
    };

Nicolas Patry's avatar
Nicolas Patry committed
2051
    // Create state
2052
2053
2054
    let validation = Validation::new(
        validation_workers,
        tokenizer,
2055
        config,
2056
        preprocessor_config,
2057
        max_best_of,
2058
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
2059
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
2060
        max_input_tokens,
2061
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2062
        disable_grammar_support,
2063
    );
OlivierDehaene's avatar
OlivierDehaene committed
2064

2065
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
2066
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2067
        validation,
2068
        max_concurrent_requests,
2069
        tokenizer_config,
drbh's avatar
drbh committed
2070
        processor_config,
2071
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2072

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
2087
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
2101
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
2102
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
2103
2104
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
2105

2106
    // Prometheus handler
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
2118
2119
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
2120
2121
2122
2123
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2238
2239
2240
2241
2242
2243
2244
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2245
2246
2247
2248
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2249
2250
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2251
2252
2253
2254
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2255
        max_input_tokens,
2256
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2257
2258
2259
2260
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2261
        validation_workers,
2262
        max_client_batch_size,
2263
        router: env!("CARGO_PKG_NAME"),
2264
2265
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2266
        docker_label: option_env!("DOCKER_LABEL"),
2267
2268
    };

2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2306
                kserve_model_infer,
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2321

2322
    // Configure Swagger UI
drbh's avatar
drbh committed
2323
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2324
2325

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2326
    let mut base_routes = Router::new()
2327
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2328
        .route("/generate", post(generate))
2329
        .route("/generate_stream", post(generate_stream))
2330
        .route("/v1/chat/completions", post(chat_completions))
2331
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2332
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2361
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2362
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2363
        .route("/health", get(health))
2364
        .route("/ping", get(health))
drbh's avatar
drbh committed
2365
2366
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
2367
2368

    // Conditional AWS Sagemaker route
2369
    let aws_sagemaker_route = if messages_api_enabled {
2370
2371
2372
2373
2374
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2375
2376
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2377

2378
    // Combine routes and layers
drbh's avatar
drbh committed
2379
    let mut app = Router::new()
2380
2381
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2382
        .merge(info_routes)
drbh's avatar
drbh committed
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2420
2421
    // add layers after routes
    app = app
2422
        .layer(Extension(info))
2423
2424
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2425
        .layer(Extension(compute_type))
2426
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2427
        .layer(OtelAxumLayer::default())
2428
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2429

OlivierDehaene's avatar
OlivierDehaene committed
2430
2431
    tracing::info!("Connected");

2432
2433
2434
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2435
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2450
2451
2452

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2453
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2454
2455
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2456
    }
2457
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2458
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2459

Nicolas Patry's avatar
Nicolas Patry committed
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2547
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2548
}
2549
2550
2551
2552
2553
2554
2555
2556
2557

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2558
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2559
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2560
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2561
2562
2563
2564
2565
2566
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2567
                error_type: err.error_type().to_string(),
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2578
                error_type: err.error_type().to_string(),
2579
2580
2581
2582
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2583
2584
2585
2586
2587
2588

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659

/// Create a post_processor for the LlamaTokenizer
fn create_post_processor(
    tokenizer: &Tokenizer,
    tokenizer_config: &HubTokenizerConfig,
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
    let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
    let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);

    let bos_token = tokenizer_config.bos_token.as_ref();
    let eos_token = tokenizer_config.eos_token.as_ref();

    if add_bos_token && bos_token.is_none() {
        panic!("add_bos_token = true but bos_token is None");
    }

    if add_eos_token && eos_token.is_none() {
        panic!("add_eos_token = true but eos_token is None");
    }

    let mut single = Vec::new();
    let mut pair = Vec::new();
    let mut special_tokens = Vec::new();

    if add_bos_token {
        if let Some(bos) = bos_token {
            let bos_token_id = tokenizer
                .token_to_id(bos.as_str())
                .expect("Should have found the bos token id");
            special_tokens.push((bos.as_str(), bos_token_id));
            single.push(format!("{}:0", bos.as_str()));
            pair.push(format!("{}:0", bos.as_str()));
        }
    }

    single.push("$A:0".to_string());
    pair.push("$A:0".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            let eos_token_id = tokenizer
                .token_to_id(eos.as_str())
                .expect("Should have found the eos token id");
            special_tokens.push((eos.as_str(), eos_token_id));
            single.push(format!("{}:0", eos.as_str()));
            pair.push(format!("{}:0", eos.as_str()));
        }
    }

    if add_bos_token {
        if let Some(bos) = bos_token {
            pair.push(format!("{}:1", bos.as_str()));
        }
    }

    pair.push("$B:1".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            pair.push(format!("{}:1", eos.as_str()));
        }
    }

    let post_processor = TemplateProcessing::builder()
        .try_single(single)?
        .try_pair(pair)?
        .special_tokens(special_tokens)
        .build()?;

    Ok(post_processor)
}
2660

drbh's avatar
drbh committed
2661
type PreparedInput = (String, Option<GrammarType>, bool);
2662
2663
2664
2665
2666
2667
2668

fn prepare_chat_input(
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2669
    guideline: Option<String>,
2670
2671
2672
2673
2674
2675
2676
2677
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

drbh's avatar
drbh committed
2678
    // when response_format is set, tools are not included when applying the chat template to generate inputs
2679
    if let Some(format) = response_format {
2680
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
drbh's avatar
drbh committed
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
2699
2700
    }

drbh's avatar
drbh committed
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
        let (inputs, _grammar, using_tools) = result.unwrap();
        assert_eq!(using_tools, true);
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"error\":{\"description\":\"The error or issue to notify\",\"type\":\"string\"}},\"required\":[\"error\"],\"type\":\"object\"}, \"description\": \"Notify an error or issue\", \"name\": \"notify_error\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
    }
2813
}