server.rs 71.9 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
3
4
5
6
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
7
8
9
10
11
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
12
use crate::validation::ValidationError;
13
use crate::{
14
15
16
17
18
    BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters,
    GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig,
    HubTokenizerConfig, Info, Message, MessageChunk, MessageContent, OutputMessage, PrefillToken,
    SimpleToken, StreamDetails, StreamResponse, TextMessage, Token, TokenizeResponse,
    ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
19
20
21
22
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
23
24
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
25
    VertexResponse,
26
};
drbh's avatar
drbh committed
27
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
28
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use axum::extract::Extension;
30
use axum::http::{HeaderMap, Method, StatusCode};
31
use axum::response::sse::{Event, KeepAlive, Sse};
32
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::routing::{get, post};
34
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
35
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
36
use futures::stream::StreamExt;
37
use futures::stream::{FuturesOrdered, FuturesUnordered};
38
use futures::Stream;
drbh's avatar
drbh committed
39
use futures::TryStreamExt;
40
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
41
use serde_json::Value;
42
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
43
use std::net::SocketAddr;
44
45
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
OlivierDehaene's avatar
OlivierDehaene committed
46
47
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
48
use tokenizers::Tokenizer;
49
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
50
use tokio::signal;
51
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
52
use tokio::time::Instant;
53
use tower_http::cors::{AllowOrigin, CorsLayer};
54
use tracing::{info_span, instrument, Instrument};
55
56
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
57

58
59
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
79
)]
80
#[instrument(skip(infer, req))]
81
async fn compat_generate(
82
    Extension(default_return_full_text): Extension<bool>,
83
    infer: Extension<Infer>,
84
    compute_type: Extension<ComputeType>,
85
    Json(mut req): Json<CompatGenerateRequest>,
86
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
87
88
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
89
        req.parameters.return_full_text = Some(default_return_full_text)
90
91
    }

92
93
    // switch on stream
    if req.stream {
94
        Ok(generate_stream(infer, compute_type, Json(req.into()))
95
96
97
            .await
            .into_response())
    } else {
98
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
99
        // wrap generation inside a Vec to match api-inference
100
        Ok((headers, Json(vec![generation])).into_response())
101
102
103
    }
}

104
105
/// Text Generation Inference endpoint info
#[utoipa::path(
106
107
108
109
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
110
111
)]
#[instrument]
112
113
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
114
115
}

116
#[utoipa::path(
117
118
119
120
121
122
123
124
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
125
126
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
127
/// Health check method
OlivierDehaene's avatar
OlivierDehaene committed
128
129
130
async fn health(
    mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
131
132
133
134
135
136
137
138
139
140
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
141
142
}

143
144
/// Generate tokens
#[utoipa::path(
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
160
)]
161
#[instrument(
162
163
skip_all,
fields(
164
parameters = ? req.parameters,
165
166
167
168
169
170
171
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
172
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
173
async fn generate(
174
    infer: Extension<Infer>,
175
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
176
    Json(req): Json<GenerateRequest>,
177
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
178
    let span = tracing::Span::current();
179
180
181
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

182
pub(crate) async fn generate_internal(
183
184
185
186
187
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
188
    let start_time = Instant::now();
189
    metrics::counter!("tgi_request_count").increment(1);
190

191
192
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
193

194
    let compute_characters = req.inputs.chars().count();
195
    let mut add_prompt = None;
196
197
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
198
199
    }

Nicolas Patry's avatar
Nicolas Patry committed
200
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
201
202

    // Inference
203
    let (response, best_of_responses) = match req.parameters.best_of {
204
        Some(best_of) if best_of > 1 => {
205
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
206
207
            (response, Some(best_of_responses))
        }
208
        _ => (infer.generate(req).await?, None),
209
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
210

OlivierDehaene's avatar
OlivierDehaene committed
211
    // Token details
212
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
213
    let details = match details {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
228
                            finish_reason: response.generated_text.finish_reason,
229
230
231
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
232
                            top_tokens: response.top_tokens,
233
234
235
236
237
238
239
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
240
                finish_reason: response.generated_text.finish_reason,
241
242
243
244
245
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
246
                top_tokens: response.top_tokens,
247
248
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
249
250
251
        false => None,
    };

252
253
254
255
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
256
257
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
258

259
260
261
262
263
264
265
266
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

267
268
    // Headers
    let mut headers = HeaderMap::new();
269
    headers.insert("x-compute-type", compute_type.parse().unwrap());
270
271
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
272
        total_time.as_secs_f64().to_string().parse().unwrap(),
273
274
275
276
277
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
278
279
280
281
282
283
284
285
286
287
288
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
289
    );
290
291
292
293
294
295
296
297
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
298
299
300
301
302
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
303

304
    // Metrics
305
306
307
308
309
310
311
312
313
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
314

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
    // Send response
316
317
318
319
320
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

321
322
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
323

324
    let response = GenerateResponse {
325
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
326
        details,
327
    };
328
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
329
330
}

Yannic Kilcher's avatar
Yannic Kilcher committed
331
/// Generate a stream of token using Server-Sent Events
332
#[utoipa::path(
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
353
)]
354
#[instrument(
355
356
skip_all,
fields(
357
parameters = ? req.parameters,
358
359
360
361
362
363
364
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
365
366
)]
async fn generate_stream(
367
    Extension(infer): Extension<Infer>,
368
    Extension(compute_type): Extension<ComputeType>,
369
    Json(req): Json<GenerateRequest>,
370
371
372
373
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
374
    let span = tracing::Span::current();
375
376
377
378
379
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
380
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
381
382
383
384
385
386
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
387
    ComputeType(compute_type): ComputeType,
388
389
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
390
    span: tracing::Span,
391
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
392
    let start_time = Instant::now();
393
    metrics::counter!("tgi_request_count").increment(1);
394

395
    tracing::debug!("Input: {}", req.inputs);
396

397
    let compute_characters = req.inputs.chars().count();
398
399

    let mut headers = HeaderMap::new();
400
    headers.insert("x-compute-type", compute_type.parse().unwrap());
401
402
403
404
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
405
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
406

407
408
409
410
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
411
412

        let mut add_prompt = None;
413
414
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
415
        }
416
        let details = req.parameters.details;
417

418
        let best_of = req.parameters.best_of.unwrap_or(1);
419
420
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
421
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
422
423
            tracing::error!("{err}");
            yield Ok(Event::from(err));
424
        } else if req.parameters.decoder_input_details {
425
            let err = InferError::from(ValidationError::PrefillDetailsStream);
426
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
427
428
429
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
430
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
431
                // Keep permit as long as generate_stream lives
432
                Ok((_permit, _input_length, mut response_stream)) => {
433
                    let mut index = 0;
434
435
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
436
                        index += 1;
437
438
439
440
441
442
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
443
444
445
446
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
447
448
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

449
450
                                        // StreamResponse
                                        let stream_token = StreamResponse {
451
                                            index,
452
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
453
                                            top_tokens,
454
455
456
                                            generated_text: None,
                                            details: None,
                                        };
457
458
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
459
                                    }
460
461
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
462
                                        token,
463
464
465
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
466
                                        top_tokens,
467
468
469
470
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
471
                                                finish_reason: generated_text.finish_reason,
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
494
495
496
497
498
499
500
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
501
502
503
504
505
506
507
508
509

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

510
511
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
512

513
                                        let stream_token = StreamResponse {
514
                                            index,
515
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
516
                                            top_tokens,
517
518
519
520
                                            generated_text: Some(output_text),
                                            details
                                        };

521
522
523

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
524
525
                                        break;
                                    }
526
527
                                }
                            }
528
529
530
531
532
533
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
534
535
                        }
                    }
536
537
538
539
540
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
541
                }
542
543
544
545
546
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
547
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
548
                tracing::error!("{err}");
549
                yield Ok(Event::from(err));
550
551
552
553
            }
        }
    };

554
555
556
    (headers, stream)
}

557
558
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
559
560
561
562
563
564
565
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
566
567
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
568
569
570
571
572
573
574
575
576
577
578
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
579
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
580
581
582
583
584
585
586
587
588
589
590
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
591
592
593
594
595
596
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
597
    let span = tracing::Span::current();
598
    metrics::counter!("tgi_request_count").increment(1);
599

600
    let CompletionRequest {
601
        model,
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
617
618
619

    // if suffix is present throw an error
    if req.suffix.is_some() {
620
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
621
622
623
624
625
626
627
628
629
630
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

631
    if req.prompt.0.len() > info.max_client_batch_size {
632
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
647
        .0
648
649
650
651
652
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
653
                temperature,
654
655
656
657
658
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
659
                do_sample,
660
661
                max_new_tokens,
                return_full_text: None,
662
                stop: stop.clone(),
663
664
665
666
667
668
669
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
670
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
671
672
673
674
675
676
677
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
678
679

    if stream {
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
700
                        .json_data(Completion::Chunk(Chunk {
701
702
703
704
705
706
707
708
709
710
711
712
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
713
                        }))
714
                        .unwrap_or_else(|_e| Event::default())
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
729

730
731
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
732

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
762
                )
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
781

782
783
784
785
786
787
788
789
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
790

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

815
816
817
818
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

819
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
820
821
822
823
824
825
826
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
929

930
        let response = Completion::Final(CompletionFinal {
931
932
933
934
935
936
937
938
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
939
            choices,
940
            usage: Usage {
941
942
943
                prompt_tokens,
                completion_tokens,
                total_tokens,
944
            },
945
        });
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
963
964
965
966
        Ok((headers, Json(response)).into_response())
    }
}

967
968
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
989
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
990
991
992
993
994
995
996
997
998
999
1000
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1001
1002
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1003
    Extension(compute_type): Extension<ComputeType>,
1004
1005
1006
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1007
    let span = tracing::Span::current();
1008
    metrics::counter!("tgi_request_count").increment(1);
1009
    let ChatRequest {
1010
        model,
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1021
        temperature,
drbh's avatar
drbh committed
1022
        response_format,
1023
1024
1025
1026
1027
1028
1029
1030
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1031
1032
1033
1034
1035
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1036

drbh's avatar
drbh committed
1037
1038
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
1039
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
drbh's avatar
drbh committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1049
1050
1051
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1052
        Err(err) => {
1053
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1065
1066
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1067
1068
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1069

drbh's avatar
drbh committed
1070
1071
1072
1073
1074
1075
1076
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1077

1078
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1079
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1080
1081
        Ok(inputs) => inputs,
        Err(err) => {
1082
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1083
1084
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1085
1086
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1087
1088
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1089
                }),
1090
1091
            ));
        }
drbh's avatar
drbh committed
1092
1093
    };

1094
1095
1096
1097
1098
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1099
            temperature,
1100
            repetition_penalty,
1101
            frequency_penalty: req.frequency_penalty,
1102
            top_k: None,
1103
            top_p: req.top_p,
1104
            typical_p: None,
1105
            do_sample,
1106
1107
            max_new_tokens,
            return_full_text: None,
1108
            stop,
1109
1110
1111
            truncate: None,
            watermark: false,
            details: true,
1112
            decoder_input_details: !stream,
1113
            seed,
1114
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1115
            grammar,
1116
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1135
1136
1137
1138
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1139
1140
1141
1142
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1143
1144
1145
1146
1147
1148
1149
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1150
1151
            };

1152
            event
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
                        stream_token.details.map(|d| d.finish_reason.to_string()),
                    ),
1163
                ))
1164
1165
1166
1167
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1168
1169
        };

1170
1171
1172
1173
1174
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1175
            span,
1176
1177
        )
        .await;
1178
1179
1180
1181
1182

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1183
1184
1185
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1186
1187
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1188
1189
1190
1191
1192
1193

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1194
        let (tool_calls, output) = if tool_grammar.is_some() {
drbh's avatar
drbh committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
            let gen_text_value: Value = serde_json::from_str(&generation.generated_text)
                .map_err(|e| InferError::ToolError(e.to_string()))?;

            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1215
            let tool_calls = vec![ToolCall {
1216
                id: "0".to_string(),
drbh's avatar
drbh committed
1217
1218
1219
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1220
1221
                    name,
                    arguments,
drbh's avatar
drbh committed
1222
                },
1223
1224
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1225
1226
1227
        } else {
            (None, Some(generation.generated_text))
        };
1228
        // build the complete response object with the full text
1229
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1230
1231
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1232
            output,
1233
1234
1235
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1236
            tool_calls,
1237
        ));
1238
1239
1240
1241

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1242
1243
}

drbh's avatar
drbh committed
1244
1245
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1278
    let span = tracing::Span::current();
1279
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1310
                generate_internal(
drbh's avatar
drbh committed
1311
                    Extension(infer.clone()),
1312
                    compute_type.clone(),
drbh's avatar
drbh committed
1313
                    Json(generate_request),
1314
                    span.clone(),
drbh's avatar
drbh committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1337
1338
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1349
1350
1351
1352
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1353
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1354
1355
1356
1357
1358
1359
1360
1361
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1362
1363
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1364
1365
1366
1367
1368
1369
1370
1371
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1372
        Ok(Json(TokenizeResponse(tokens)))
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1384
1385
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1386
1387
1388
1389
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1390
1391
1392
1393
1394
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1395
1396
1397
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1398
1399
1400
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
OlivierDehaene's avatar
OlivierDehaene committed
1401
    master_shard_uds_path: String,
1402
    model_info: HubModelInfo,
1403
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1404
    max_concurrent_requests: usize,
1405
    max_best_of: usize,
1406
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1407
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1408
    max_input_tokens: usize,
1409
    max_total_tokens: usize,
1410
    waiting_served_ratio: f32,
1411
    max_batch_prefill_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1412
    max_batch_total_tokens: Option<u32>,
1413
    max_waiting_tokens: usize,
1414
    max_batch_size: Option<usize>,
1415
    tokenizer: Option<Tokenizer>,
1416
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1417
1418
    validation_workers: usize,
    addr: SocketAddr,
1419
    allow_origin: Option<AllowOrigin>,
1420
    ngrok: bool,
1421
1422
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1423
    tokenizer_config: HubTokenizerConfig,
1424
    preprocessor_config: Option<HubPreprocessorConfig>,
drbh's avatar
drbh committed
1425
    processor_config: HubProcessorConfig,
1426
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1427
    grammar_support: bool,
1428
    max_client_batch_size: usize,
1429
    print_schema_command: bool,
OlivierDehaene's avatar
OlivierDehaene committed
1430
) -> Result<(), WebServerError> {
1431
1432
1433
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1434
1435
1436
1437
1438
1439
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1440
    chat_completions,
1441
    completions,
1442
    tokenize,
1443
1444
1445
1446
1447
1448
1449
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1450
    GrammarType,
1451
1452
    ChatRequest,
    Message,
1453
1454
    MessageContent,
    MessageChunk,
1455
1456
1457
1458
1459
1460
    Url,
    FunctionName,
    OutputMessage,
    TextMessage,
    ToolCallMessage,
    ToolCallDelta,
1461
    ChatCompletionComplete,
1462
1463
1464
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1465
1466
1467
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1468
    ChatCompletion,
1469
1470
    CompletionRequest,
    CompletionComplete,
1471
1472
1473
1474
    Chunk,
    Completion,
    CompletionFinal,
    Prompt,
1475
1476
1477
1478
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1479
1480
    TokenizeResponse,
    SimpleToken,
1481
1482
1483
1484
1485
1486
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1487
    GrammarType,
1488
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1489
1490
1491
1492
1493
1494
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
drbh's avatar
drbh committed
1495
    ToolChoice,
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1508
1509
1510
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1511
    // Create state
1512
1513
1514
1515
1516
1517
    if print_schema_command {
        let api_doc = ApiDoc::openapi();
        let api_doc = serde_json::to_string_pretty(&api_doc).unwrap();
        println!("{}", api_doc);
        std::process::exit(0);
    }
OlivierDehaene's avatar
OlivierDehaene committed
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

    // Open connection, get model info and warmup
    let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
        Arc<dyn Scheduler + Send + Sync>,
        HealthCheck,
        ShardInfo,
        u32,
    ) = {
        // Helper function to check both v2 and v3
        let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
            match max_supported_batch_total_tokens {
                // Older models do not support automatic max-batch-total-tokens
                None => {
                    let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
                        16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
                    );
                    tracing::warn!("Model does not support automatic max batch total tokens");
                    Ok(max_batch_total_tokens)
                }
                // Flash attention models return their max supported total tokens
                Some(max_supported_batch_total_tokens) => {
                    // Warn if user added his own max-batch-total-tokens as we will ignore it
                    if max_batch_total_tokens.is_some() {
                        tracing::warn!(
                            "`--max-batch-total-tokens` is deprecated for Flash \
                        Attention models."
                        );
                        tracing::warn!(
                            "Inferred max batch total tokens: {max_supported_batch_total_tokens}"
                        );
                    }
                    if max_total_tokens as u32 > max_supported_batch_total_tokens {
                        return Err(WebServerError::NotEnoughMemory(max_total_tokens));
                    }

                    Ok(max_supported_batch_total_tokens)
                }
            }
        };

        let generation_health = Arc::new(AtomicBool::new(false));

        match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
            Ok(mut sharded_client) => {
                // server is running on v3
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV3::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V3");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
            Err(_) => {
                let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
                    .await
                    .map_err(WebServerError::Connection)?;

                // server is running on v2
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV2::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V2");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
        }
    };
    tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");

1653
1654
1655
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1656
        config,
1657
        preprocessor_config,
1658
        max_best_of,
1659
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1660
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1661
        max_input_tokens,
1662
        max_total_tokens,
drbh's avatar
drbh committed
1663
        grammar_support,
1664
    );
OlivierDehaene's avatar
OlivierDehaene committed
1665

1666
    let infer = Infer::new(
OlivierDehaene's avatar
OlivierDehaene committed
1667
        scheduler,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1668
        validation,
1669
        max_concurrent_requests,
1670
        tokenizer_config,
drbh's avatar
drbh committed
1671
        processor_config,
1672
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1673

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1688
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1702
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1703
1704
1705
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1706

1707
    // Prometheus handler
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1718
1719
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1720
        .unwrap();
1721
1722
1723
1724
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1725
1726
1727
1728
1729
1730
1731
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1742
        max_input_tokens,
1743
1744
1745
1746
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1747
        max_batch_size,
1748
        validation_workers,
1749
        max_client_batch_size,
1750
        router: env!("CARGO_PKG_NAME"),
1751
1752
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1753
        docker_label: option_env!("DOCKER_LABEL"),
1754
1755
    };

1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
1793
                kserve_model_infer,
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
1808

1809
    // Configure Swagger UI
drbh's avatar
drbh committed
1810
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1811
1812
1813

    // Define base and health routes
    let base_routes = Router::new()
1814
        .route("/", post(compat_generate))
1815
        .route("/", get(health))
1816
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1817
        .route("/generate", post(generate))
1818
        .route("/generate_stream", post(generate_stream))
1819
        .route("/v1/chat/completions", post(chat_completions))
1820
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1821
        .route("/vertex", post(vertex_compatibility))
1822
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1823
        .route("/health", get(health))
1824
        .route("/ping", get(health))
1825
1826
1827
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1828
    let aws_sagemaker_route = if messages_api_enabled {
1829
1830
1831
1832
1833
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1834
1835
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1836

1837
    // Combine routes and layers
drbh's avatar
drbh committed
1838
    let mut app = Router::new()
1839
1840
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
1878
1879
    // add layers after routes
    app = app
1880
        .layer(Extension(info))
1881
        .layer(Extension(health_ext.clone()))
1882
1883
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1884
        .layer(Extension(compute_type))
1885
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1886
        .layer(OtelAxumLayer::default())
1887
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1888

OlivierDehaene's avatar
OlivierDehaene committed
1889
1890
    tracing::info!("Connected");

1891
1892
1893
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
1894
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
1909
1910
1911

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
1912
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
1913
1914
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
1915
    }
1916
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1917
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1944
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1945
}
1946
1947
1948
1949
1950
1951
1952
1953
1954

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1955
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1956
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1957
1958
1959
1960
1961
1962
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1963
                error_type: err.error_type().to_string(),
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1974
                error_type: err.error_type().to_string(),
1975
1976
1977
1978
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Unable to connect to the Python model shards: {0}")]
    Connection(ClientError),
    #[error("Unable to clear the Python model shards cache: {0}")]
    Cache(ClientError),
    #[error("Unable to get the Python model shards info: {0}")]
    Info(ClientError),
    #[error("Unable to warmup the Python model shards: {0}")]
    Warmup(ClientError),
    #[error("Not enough memory to handle `max_total_tokens={0}`")]
    NotEnoughMemory(usize),
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}