".github/vscode:/vscode.git/clone" did not exist on "336b5dd59024ee5434fe8daabfa0762a68b63e60"
server.rs 71.2 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
3
4
5
6
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
7
8
9
10
11
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
12
use crate::validation::ValidationError;
13
use crate::{
14
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
OlivierDehaene's avatar
OlivierDehaene committed
15
16
17
    GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
    Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
    Usage, Validation,
18
19
20
21
22
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
OlivierDehaene's avatar
OlivierDehaene committed
23
    CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
24
};
25
use crate::{FunctionDefinition, ToolCall, ToolType};
26
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
27
use axum::extract::Extension;
28
use axum::http::{HeaderMap, Method, StatusCode};
29
use axum::response::sse::{Event, KeepAlive, Sse};
30
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
31
use axum::routing::{get, post};
32
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
33
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
34
use futures::stream::StreamExt;
35
use futures::stream::{FuturesOrdered, FuturesUnordered};
36
use futures::Stream;
drbh's avatar
drbh committed
37
use futures::TryStreamExt;
38
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
39
use serde_json::Value;
40
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
41
use std::net::SocketAddr;
42
43
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
OlivierDehaene's avatar
OlivierDehaene committed
44
45
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
46
use tokenizers::Tokenizer;
47
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
48
use tokio::signal;
49
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
50
use tokio::time::Instant;
51
use tower_http::cors::{AllowOrigin, CorsLayer};
52
use tracing::{info_span, instrument, Instrument};
53
54
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
55

56
57
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
77
)]
78
#[instrument(skip(infer, req))]
79
async fn compat_generate(
80
    Extension(default_return_full_text): Extension<bool>,
81
    infer: Extension<Infer>,
82
    compute_type: Extension<ComputeType>,
83
    Json(mut req): Json<CompatGenerateRequest>,
84
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
85
86
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
87
        req.parameters.return_full_text = Some(default_return_full_text)
88
89
    }

90
91
    // switch on stream
    if req.stream {
92
        Ok(generate_stream(infer, compute_type, Json(req.into()))
93
94
95
            .await
            .into_response())
    } else {
96
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
97
        // wrap generation inside a Vec to match api-inference
98
        Ok((headers, Json(vec![generation])).into_response())
99
100
101
    }
}

102
103
/// Text Generation Inference endpoint info
#[utoipa::path(
104
105
106
107
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
108
109
)]
#[instrument]
110
111
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
112
113
}

114
#[utoipa::path(
115
116
117
118
119
120
121
122
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
123
124
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
125
/// Health check method
OlivierDehaene's avatar
OlivierDehaene committed
126
127
128
async fn health(
    mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
129
130
131
132
133
134
135
136
137
138
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
139
140
}

141
142
/// Generate tokens
#[utoipa::path(
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
158
)]
159
#[instrument(
160
161
skip_all,
fields(
162
parameters = ? req.parameters,
163
164
165
166
167
168
169
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
170
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
171
async fn generate(
172
    infer: Extension<Infer>,
173
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
174
    Json(req): Json<GenerateRequest>,
175
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
176
    let span = tracing::Span::current();
177
178
179
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

180
pub(crate) async fn generate_internal(
181
182
183
184
185
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
186
    let start_time = Instant::now();
187
    metrics::increment_counter!("tgi_request_count");
188

189
190
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
191

192
    let compute_characters = req.inputs.chars().count();
193
    let mut add_prompt = None;
194
195
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
196
197
    }

Nicolas Patry's avatar
Nicolas Patry committed
198
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
199
200

    // Inference
201
    let (response, best_of_responses) = match req.parameters.best_of {
202
        Some(best_of) if best_of > 1 => {
203
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
204
205
            (response, Some(best_of_responses))
        }
206
        _ => (infer.generate(req).await?, None),
207
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
208

OlivierDehaene's avatar
OlivierDehaene committed
209
    // Token details
210
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
211
    let details = match details {
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
226
                            finish_reason: response.generated_text.finish_reason,
227
228
229
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
230
                            top_tokens: response.top_tokens,
231
232
233
234
235
236
237
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
238
                finish_reason: response.generated_text.finish_reason,
239
240
241
242
243
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
244
                top_tokens: response.top_tokens,
245
246
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
247
248
249
        false => None,
    };

250
251
252
253
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
254
255
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
256

257
258
259
260
261
262
263
264
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

265
266
    // Headers
    let mut headers = HeaderMap::new();
267
    headers.insert("x-compute-type", compute_type.parse().unwrap());
268
269
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
270
        total_time.as_secs_f64().to_string().parse().unwrap(),
271
272
273
274
275
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
276
277
278
279
280
281
282
283
284
285
286
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
287
    );
288
289
290
291
292
293
294
295
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
296
297
298
299
300
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
301

302
303
    // Metrics
    metrics::increment_counter!("tgi_request_success");
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
318
319
320
321
322
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
323
    // Send response
324
325
326
327
328
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

329
330
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
331

332
    let response = GenerateResponse {
333
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
334
        details,
335
    };
336
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
337
338
}

Yannic Kilcher's avatar
Yannic Kilcher committed
339
/// Generate a stream of token using Server-Sent Events
340
#[utoipa::path(
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
361
)]
362
#[instrument(
363
364
skip_all,
fields(
365
parameters = ? req.parameters,
366
367
368
369
370
371
372
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
373
374
)]
async fn generate_stream(
375
    Extension(infer): Extension<Infer>,
376
    Extension(compute_type): Extension<ComputeType>,
377
    Json(req): Json<GenerateRequest>,
378
379
380
381
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
382
    let span = tracing::Span::current();
383
384
385
386
387
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
388
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
389
390
391
392
393
394
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
395
    ComputeType(compute_type): ComputeType,
396
397
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
398
    span: tracing::Span,
399
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
400
    let start_time = Instant::now();
401
    metrics::increment_counter!("tgi_request_count");
402

403
    tracing::debug!("Input: {}", req.inputs);
404

405
    let compute_characters = req.inputs.chars().count();
406
407

    let mut headers = HeaderMap::new();
408
    headers.insert("x-compute-type", compute_type.parse().unwrap());
409
410
411
412
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
413
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
414

415
416
417
418
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
419
420

        let mut add_prompt = None;
421
422
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
423
        }
424
        let details = req.parameters.details;
425

426
        let best_of = req.parameters.best_of.unwrap_or(1);
427
428
429
430
431
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
432
        } else if req.parameters.decoder_input_details {
433
434
435
436
437
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
438
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
439
                // Keep permit as long as generate_stream lives
440
                Ok((_permit, _input_length, mut response_stream)) => {
441
                    let mut index = 0;
442
443
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
444
                        index += 1;
445
446
447
448
449
450
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
451
452
453
454
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
455
456
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

457
458
                                        // StreamResponse
                                        let stream_token = StreamResponse {
459
                                            index,
460
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
461
                                            top_tokens,
462
463
464
                                            generated_text: None,
                                            details: None,
                                        };
465
466
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
467
                                    }
468
469
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
470
                                        token,
471
472
473
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
474
                                        top_tokens,
475
476
477
478
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
479
                                                finish_reason: generated_text.finish_reason,
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
503
504
505
506
507
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
508
509
510
511
512
513
514
515
516
517
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

518
519
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
520

521
                                        let stream_token = StreamResponse {
522
                                            index,
523
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
524
                                            top_tokens,
525
526
527
528
                                            generated_text: Some(output_text),
                                            details
                                        };

529
530
531

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
532
533
                                        break;
                                    }
534
535
                                }
                            }
536
537
538
539
540
541
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
542
543
                        }
                    }
544
545
546
547
548
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
549
                }
550
551
552
553
554
555
556
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
557
                yield Ok(Event::from(err));
558
559
560
561
            }
        }
    };

562
563
564
    (headers, stream)
}

565
566
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = Completion),
("text/event-stream" = CompletionCompleteChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
587
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
588
589
590
591
592
593
594
595
596
597
598
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
599
600
601
602
603
604
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
605
    let span = tracing::Span::current();
606
607
    metrics::increment_counter!("tgi_request_count");

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    let CompletionRequest {
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    if req.prompt.len() > info.max_client_batch_size {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
659
                temperature,
660
661
662
663
664
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
665
                do_sample,
666
667
                max_new_tokens,
                return_full_text: None,
668
                stop: stop.clone(),
669
670
671
672
673
674
675
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
drbh's avatar
drbh committed
676
                ..Default::default()
677
678
679
680
681
682
683
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
684
685

    if stream {
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
                        .json_data(CompletionCompleteChunk {
                            id: "".to_string(),
                            object: "text_completion".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
                        })
721
                        .unwrap_or_else(|_e| Event::default())
722
723
724
725
726
727
728
729
730
731
732
733
734
735
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
736

737
738
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
769
                )
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
788

789
790
791
792
793
794
795
796
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
797

798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
823
824
825
826
827
828
829
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
932
933
934
935
936
937
938
939
940
941
942

        let response = Completion {
            id: "".to_string(),
            object: "text_completion".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
943
            choices,
944
            usage: Usage {
945
946
947
                prompt_tokens,
                completion_tokens,
                total_tokens,
948
949
950
            },
        };

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
967
968
969
970
        Ok((headers, Json(response)).into_response())
    }
}

971
972
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
993
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1005
1006
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1007
    Extension(compute_type): Extension<ComputeType>,
1008
1009
1010
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1011
    let span = tracing::Span::current();
1012
    metrics::increment_counter!("tgi_request_count");
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    let ChatRequest {
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1024
        temperature,
drbh's avatar
drbh committed
1025
        response_format,
1026
1027
1028
1029
1030
1031
1032
1033
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1034
1035
1036
1037
1038
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1039

drbh's avatar
drbh committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1052
1053
1054
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1068
1069
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1070
1071
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1072

drbh's avatar
drbh committed
1073
1074
1075
1076
1077
1078
1079
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1080

1081
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1082
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1083
1084
1085
1086
1087
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1088
1089
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1090
1091
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1092
                }),
1093
1094
            ));
        }
drbh's avatar
drbh committed
1095
1096
    };

1097
1098
1099
1100
1101
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1102
            temperature,
1103
            repetition_penalty,
1104
            frequency_penalty: req.frequency_penalty,
1105
            top_k: None,
1106
            top_p: req.top_p,
1107
            typical_p: None,
1108
            do_sample,
1109
1110
            max_new_tokens,
            return_full_text: None,
1111
            stop,
1112
1113
1114
            truncate: None,
            watermark: false,
            details: true,
1115
            decoder_input_details: !stream,
1116
            seed,
1117
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1118
            grammar,
drbh's avatar
drbh committed
1119
            ..Default::default()
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1138
1139
1140
1141
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1142
1143
1144
1145
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1146
1147
1148
1149
1150
1151
1152
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1153
1154
            };

1155
1156
1157
1158
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
1159
1160
                    content,
                    tool_calls,
1161
                    current_time,
1162
                    logprobs,
1163
1164
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
1165
1166
1167
1168
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1169
1170
        };

1171
1172
1173
1174
1175
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1176
            span,
1177
1178
        )
        .await;
1179
1180
1181
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1182
1183
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1184
1185
1186
1187
1188
1189

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;
1202
            let tool_calls = vec![ToolCall {
1203
                id: "0".to_string(),
drbh's avatar
drbh committed
1204
1205
1206
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
                    name: gen_text_value
                        .get("function")
                        .and_then(|f| f.get("_name"))
                        .and_then(|name| name.as_str())
                        .unwrap_or("default_function_name")
                        .to_string(),
                    // Serialize the JSON object obtained from "function" to an escaped JSON string
                    arguments: gen_text_value
                        .get("function")
                        .map(|f| {
                            let mut f_cloned = f.clone();
                            if let Value::Object(ref mut props) = f_cloned {
                                props.remove("_name");
                            }
                            f_cloned
                        })
                        .unwrap_or_default(),
drbh's avatar
drbh committed
1224
                },
1225
1226
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1227
1228
1229
        } else {
            (None, Some(generation.generated_text))
        };
1230
1231
1232
1233
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1234
            output,
1235
1236
1237
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1238
            tool_calls,
1239
1240
1241
1242
1243
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1244
1245
}

drbh's avatar
drbh committed
1246
1247
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1280
    let span = tracing::Span::current();
drbh's avatar
drbh committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1312
                generate_internal(
drbh's avatar
drbh committed
1313
                    Extension(infer.clone()),
1314
                    compute_type.clone(),
drbh's avatar
drbh committed
1315
                    Json(generate_request),
1316
                    span.clone(),
drbh's avatar
drbh committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1339
1340
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1351
1352
1353
1354
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1355
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1356
1357
1358
1359
1360
1361
1362
1363
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1364
1365
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1366
1367
1368
1369
1370
1371
1372
1373
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1374
        Ok(Json(TokenizeResponse(tokens)))
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1386
1387
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1388
1389
1390
1391
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
1392
1393
1394
1395
1396
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1397
1398
1399
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1400
1401
1402
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
OlivierDehaene's avatar
OlivierDehaene committed
1403
    master_shard_uds_path: String,
1404
    model_info: HubModelInfo,
1405
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1406
    max_concurrent_requests: usize,
1407
    max_best_of: usize,
1408
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1409
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1410
    max_input_tokens: usize,
1411
    max_total_tokens: usize,
1412
    waiting_served_ratio: f32,
1413
    max_batch_prefill_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1414
    max_batch_total_tokens: Option<u32>,
1415
    max_waiting_tokens: usize,
1416
    max_batch_size: Option<usize>,
1417
    tokenizer: Option<Tokenizer>,
1418
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1419
1420
    validation_workers: usize,
    addr: SocketAddr,
1421
    allow_origin: Option<AllowOrigin>,
1422
    ngrok: bool,
1423
1424
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1425
    tokenizer_config: HubTokenizerConfig,
drbh's avatar
drbh committed
1426
    processor_config: HubProcessorConfig,
1427
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1428
    grammar_support: bool,
1429
    max_client_batch_size: usize,
OlivierDehaene's avatar
OlivierDehaene committed
1430
) -> Result<(), WebServerError> {
1431
1432
1433
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1434
1435
1436
1437
1438
1439
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1440
    chat_completions,
1441
    completions,
1442
    tokenize,
1443
1444
1445
1446
1447
1448
1449
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1450
    GrammarType,
1451
1452
    ChatRequest,
    Message,
1453
    ChatCompletionComplete,
1454
1455
1456
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1457
1458
1459
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1460
    ChatCompletion,
1461
1462
1463
    CompletionRequest,
    CompletionComplete,
    CompletionCompleteChunk,
1464
1465
1466
1467
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1468
1469
    TokenizeResponse,
    SimpleToken,
1470
1471
1472
1473
1474
1475
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1476
    GrammarType,
1477
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1478
1479
1480
1481
1482
1483
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1496
1497
1498
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1499
    // Create state
OlivierDehaene's avatar
OlivierDehaene committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

    // Open connection, get model info and warmup
    let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
        Arc<dyn Scheduler + Send + Sync>,
        HealthCheck,
        ShardInfo,
        u32,
    ) = {
        // Helper function to check both v2 and v3
        let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
            match max_supported_batch_total_tokens {
                // Older models do not support automatic max-batch-total-tokens
                None => {
                    let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
                        16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
                    );
                    tracing::warn!("Model does not support automatic max batch total tokens");
                    Ok(max_batch_total_tokens)
                }
                // Flash attention models return their max supported total tokens
                Some(max_supported_batch_total_tokens) => {
                    // Warn if user added his own max-batch-total-tokens as we will ignore it
                    if max_batch_total_tokens.is_some() {
                        tracing::warn!(
                            "`--max-batch-total-tokens` is deprecated for Flash \
                        Attention models."
                        );
                        tracing::warn!(
                            "Inferred max batch total tokens: {max_supported_batch_total_tokens}"
                        );
                    }
                    if max_total_tokens as u32 > max_supported_batch_total_tokens {
                        return Err(WebServerError::NotEnoughMemory(max_total_tokens));
                    }

                    Ok(max_supported_batch_total_tokens)
                }
            }
        };

        let generation_health = Arc::new(AtomicBool::new(false));

        match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
            Ok(mut sharded_client) => {
                // server is running on v3
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV3::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V3");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
            Err(_) => {
                let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
                    .await
                    .map_err(WebServerError::Connection)?;

                // server is running on v2
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV2::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V2");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
        }
    };
    tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");

1635
1636
1637
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1638
        config,
1639
        max_best_of,
1640
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1641
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1642
        max_input_tokens,
1643
        max_total_tokens,
drbh's avatar
drbh committed
1644
        grammar_support,
1645
    );
OlivierDehaene's avatar
OlivierDehaene committed
1646

1647
    let infer = Infer::new(
OlivierDehaene's avatar
OlivierDehaene committed
1648
        scheduler,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1649
        validation,
1650
        max_concurrent_requests,
1651
        tokenizer_config,
drbh's avatar
drbh committed
1652
        processor_config,
1653
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1654

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1669
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1683
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1684
1685
1686
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1687

1688
    // Prometheus handler
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1699
1700
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1701
        .unwrap();
1702
1703
1704
1705
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1706
1707
1708
1709
1710
1711
1712
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1723
        max_input_tokens,
1724
1725
1726
1727
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1728
        max_batch_size,
1729
        validation_workers,
1730
        max_client_batch_size,
1731
        router: env!("CARGO_PKG_NAME"),
1732
1733
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1734
        docker_label: option_env!("DOCKER_LABEL"),
1735
1736
    };

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_model_infer,
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
1789

1790
    // Configure Swagger UI
drbh's avatar
drbh committed
1791
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1792
1793
1794

    // Define base and health routes
    let base_routes = Router::new()
1795
        .route("/", post(compat_generate))
1796
        .route("/", get(health))
1797
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1798
        .route("/generate", post(generate))
1799
        .route("/generate_stream", post(generate_stream))
1800
        .route("/v1/chat/completions", post(chat_completions))
1801
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1802
        .route("/vertex", post(vertex_compatibility))
1803
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1804
        .route("/health", get(health))
1805
        .route("/ping", get(health))
1806
1807
1808
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1809
    let aws_sagemaker_route = if messages_api_enabled {
1810
1811
1812
1813
1814
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1815
1816
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1817

1818
    // Combine routes and layers
drbh's avatar
drbh committed
1819
    let mut app = Router::new()
1820
1821
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
1859
1860
    // add layers after routes
    app = app
1861
        .layer(Extension(info))
1862
        .layer(Extension(health_ext.clone()))
1863
1864
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1865
        .layer(Extension(compute_type))
1866
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1867
        .layer(OtelAxumLayer::default())
1868
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1869

OlivierDehaene's avatar
OlivierDehaene committed
1870
1871
    tracing::info!("Connected");

1872
1873
1874
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
1875
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
1890
1891
1892

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
1893
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
1894
1895
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
1896
    }
1897
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1898
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1925
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1926
}
1927
1928
1929
1930
1931
1932
1933
1934
1935

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1936
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1937
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1938
1939
1940
1941
1942
1943
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1944
                error_type: err.error_type().to_string(),
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1955
                error_type: err.error_type().to_string(),
1956
1957
1958
1959
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Unable to connect to the Python model shards: {0}")]
    Connection(ClientError),
    #[error("Unable to clear the Python model shards cache: {0}")]
    Cache(ClientError),
    #[error("Unable to get the Python model shards info: {0}")]
    Info(ClientError),
    #[error("Unable to warmup the Python model shards: {0}")]
    Warmup(ClientError),
    #[error("Not enough memory to handle `max_total_tokens={0}`")]
    NotEnoughMemory(usize),
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}