server.rs 64.4 KB
Newer Older
1
use crate::config::Config;
2
/// HTTP Server logic
3
use crate::health::Health;
4
use crate::infer::{InferError, InferResponse, InferStreamResponse, ToolGrammar};
5
use crate::validation::ValidationError;
6
use crate::{
7
8
9
10
11
12
13
14
15
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
    GenerateResponse, GrammarType, HubModelInfo, HubTokenizerConfig, Infer, Info, Message,
    PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Usage,
    Validation,
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
OlivierDehaene's avatar
OlivierDehaene committed
16
    CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
17
};
18
use crate::{FunctionDefinition, ToolCall, ToolType};
19
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
20
use axum::extract::Extension;
21
use axum::http::{HeaderMap, Method, StatusCode};
22
use axum::response::sse::{Event, KeepAlive, Sse};
23
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
24
use axum::routing::{get, post};
25
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
26
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
27
use futures::stream::StreamExt;
28
use futures::stream::{FuturesOrdered, FuturesUnordered};
29
use futures::Stream;
drbh's avatar
drbh committed
30
use futures::TryStreamExt;
31
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
32
use serde_json::Value;
33
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
34
use std::net::SocketAddr;
35
36
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
37
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
38
use tokenizers::Tokenizer;
39
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
40
use tokio::signal;
41
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
42
use tokio::time::Instant;
43
use tower_http::cors::{AllowOrigin, CorsLayer};
44
use tracing::{info_span, instrument, Instrument};
45
46
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
47

48
49
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
69
)]
70
#[instrument(skip(infer, req))]
71
async fn compat_generate(
72
    Extension(default_return_full_text): Extension<bool>,
73
    infer: Extension<Infer>,
74
    compute_type: Extension<ComputeType>,
75
    Json(mut req): Json<CompatGenerateRequest>,
76
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
77
78
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
79
        req.parameters.return_full_text = Some(default_return_full_text)
80
81
    }

82
83
    // switch on stream
    if req.stream {
84
        Ok(generate_stream(infer, compute_type, Json(req.into()))
85
86
87
            .await
            .into_response())
    } else {
88
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
89
        // wrap generation inside a Vec to match api-inference
90
        Ok((headers, Json(vec![generation])).into_response())
91
92
93
    }
}

94
95
/// Text Generation Inference endpoint info
#[utoipa::path(
96
97
98
99
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
100
101
)]
#[instrument]
102
103
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
104
105
}

106
#[utoipa::path(
107
108
109
110
111
112
113
114
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
115
116
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
117
/// Health check method
118
119
120
121
122
123
124
125
126
127
128
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
129
130
}

131
132
/// Generate tokens
#[utoipa::path(
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
148
)]
149
#[instrument(
150
151
skip_all,
fields(
152
parameters = ? req.parameters,
153
154
155
156
157
158
159
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
160
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
161
async fn generate(
162
    infer: Extension<Infer>,
163
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
164
    Json(req): Json<GenerateRequest>,
165
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
166
    let span = tracing::Span::current();
167
168
169
170
171
172
173
174
175
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

async fn generate_internal(
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
176
    let start_time = Instant::now();
177
    metrics::increment_counter!("tgi_request_count");
178

179
180
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
181

182
    let compute_characters = req.inputs.chars().count();
183
    let mut add_prompt = None;
184
185
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
186
187
    }

Nicolas Patry's avatar
Nicolas Patry committed
188
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
189
190

    // Inference
191
    let (response, best_of_responses) = match req.parameters.best_of {
192
        Some(best_of) if best_of > 1 => {
193
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
194
195
            (response, Some(best_of_responses))
        }
196
        _ => (infer.generate(req).await?, None),
197
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
198

OlivierDehaene's avatar
OlivierDehaene committed
199
    // Token details
200
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
201
    let details = match details {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
222
                            top_tokens: response.top_tokens,
223
224
225
226
227
228
229
230
231
232
233
234
235
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
236
                top_tokens: response.top_tokens,
237
238
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
239
240
241
        false => None,
    };

242
243
244
245
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
246
247
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
248

249
250
251
252
253
254
255
256
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

257
258
    // Headers
    let mut headers = HeaderMap::new();
259
    headers.insert("x-compute-type", compute_type.parse().unwrap());
260
261
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
262
        total_time.as_secs_f64().to_string().parse().unwrap(),
263
264
265
266
267
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
268
269
270
271
272
273
274
275
276
277
278
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
279
    );
280
281
282
283
284
285
286
287
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
288
289
290
291
292
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
293

294
295
    // Metrics
    metrics::increment_counter!("tgi_request_success");
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
310
311
312
313
314
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
    // Send response
316
317
318
319
320
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

321
322
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
323

324
    let response = GenerateResponse {
325
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
326
        details,
327
    };
328
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
329
330
}

Yannic Kilcher's avatar
Yannic Kilcher committed
331
/// Generate a stream of token using Server-Sent Events
332
#[utoipa::path(
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
353
)]
354
#[instrument(
355
356
skip_all,
fields(
357
parameters = ? req.parameters,
358
359
360
361
362
363
364
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
365
366
)]
async fn generate_stream(
367
    Extension(infer): Extension<Infer>,
368
    Extension(compute_type): Extension<ComputeType>,
369
    Json(req): Json<GenerateRequest>,
370
371
372
373
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
374
    let span = tracing::Span::current();
375
376
377
378
379
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
380
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
381
382
383
384
385
386
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
387
    ComputeType(compute_type): ComputeType,
388
389
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
390
    span: tracing::Span,
391
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
392
    let start_time = Instant::now();
393
    metrics::increment_counter!("tgi_request_count");
394

395
    tracing::debug!("Input: {}", req.inputs);
396

397
    let compute_characters = req.inputs.chars().count();
398
399

    let mut headers = HeaderMap::new();
400
    headers.insert("x-compute-type", compute_type.parse().unwrap());
401
402
403
404
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
405
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
406

407
408
409
410
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
411
412

        let mut add_prompt = None;
413
414
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
415
        }
416
        let details = req.parameters.details;
417

418
        let best_of = req.parameters.best_of.unwrap_or(1);
419
420
421
422
423
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
424
        } else if req.parameters.decoder_input_details {
425
426
427
428
429
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
430
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
431
                // Keep permit as long as generate_stream lives
432
                Ok((_permit, _input_length, mut response_stream)) => {
433
                    let mut index = 0;
434
435
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
436
                        index += 1;
437
438
439
440
441
442
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
443
444
445
446
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
447
448
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

449
450
                                        // StreamResponse
                                        let stream_token = StreamResponse {
451
                                            index,
452
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
453
                                            top_tokens,
454
455
456
                                            generated_text: None,
                                            details: None,
                                        };
457
458
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
459
                                    }
460
461
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
462
                                        token,
463
464
465
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
466
                                        top_tokens,
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
495
496
497
498
499
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
500
501
502
503
504
505
506
507
508
509
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

510
511
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
512

513
                                        let stream_token = StreamResponse {
514
                                            index,
515
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
516
                                            top_tokens,
517
518
519
520
                                            generated_text: Some(output_text),
                                            details
                                        };

521
522
523

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
524
525
                                        break;
                                    }
526
527
                                }
                            }
528
529
530
531
532
533
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
534
535
                        }
                    }
536
537
538
539
540
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
541
                }
542
543
544
545
546
547
548
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
549
                yield Ok(Event::from(err));
550
551
552
553
            }
        }
    };

554
555
556
    (headers, stream)
}

557
558
559
560
561
562
563
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/completions",
    request_body = CompletionRequest,
    responses(
564
565
566
567
568
    (status = 200, description = "Generated Chat Completion",
    content(
    ("application/json" = Completion),
    ("text/event-stream" = CompletionCompleteChunk),
    )),
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
597
    let span = tracing::Span::current();
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let seed = req.seed;

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    if req.prompt.len() > info.max_client_batch_size {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
                temperature: req.temperature,
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
                do_sample: true,
                max_new_tokens,
                return_full_text: None,
                stop: Vec::new(),
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
662
663

    if stream {
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
                        .json_data(CompletionCompleteChunk {
                            id: "".to_string(),
                            object: "text_completion".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
                        })
                        .map_or_else(|_e| Event::default(), |data| data)
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
714

715
716
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
717

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
747
                )
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
766

767
768
769
770
771
772
773
774
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
801
802
803
804
805
806
807
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
910
911
912
913
914
915
916
917
918
919
920

        let response = Completion {
            id: "".to_string(),
            object: "text_completion".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
921
            choices,
922
            usage: Usage {
923
924
925
                prompt_tokens,
                completion_tokens,
                total_tokens,
926
927
928
            },
        };

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
945
946
947
948
        Ok((headers, Json(response)).into_response())
    }
}

949
950
951
952
953
954
955
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
956
957
958
959
960
    (status = 200, description = "Generated Chat Completion",
    content(
    ("application/json" = ChatCompletion),
    ("text/event-stream" = ChatCompletionChunk),
    )),
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
985
    Extension(compute_type): Extension<ComputeType>,
986
987
988
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
989
    let span = tracing::Span::current();
990
991
    metrics::increment_counter!("tgi_request_count");

992
993
994
995
996
997
998
999
1000
1001
1002
    let ChatRequest {
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1003
        temperature,
1004
1005
1006
1007
1008
1009
1010
1011
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1012
1013
1014
1015
1016
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1017
1018
1019
1020

    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

1034
1035
1036
    let grammar_with_prompt = tool_grammar
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1037

1038
1039
1040
    let typed_grammar = grammar_with_prompt
        .as_ref()
        .map(|(grammar, _)| grammar.clone());
drbh's avatar
drbh committed
1041

1042
1043
1044
1045
1046
1047
1048
    // apply chat template to flatten the request into a single input
    let inputs = match infer.apply_chat_template(messages, grammar_with_prompt) {
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1049
1050
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1051
1052
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1053
                }),
1054
1055
            ));
        }
drbh's avatar
drbh committed
1056
1057
    };

1058
1059
1060
1061
1062
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1063
            temperature,
1064
            repetition_penalty,
1065
            frequency_penalty: req.frequency_penalty,
1066
            top_k: None,
1067
            top_p: req.top_p,
1068
            typical_p: None,
1069
            do_sample,
1070
1071
            max_new_tokens,
            return_full_text: None,
1072
            stop,
1073
1074
1075
            truncate: None,
            watermark: false,
            details: true,
1076
            decoder_input_details: !stream,
1077
            seed,
1078
            top_n_tokens: req.top_logprobs,
1079
            grammar: typed_grammar,
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1098
1099
1100
1101
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1102
1103
1104
1105
1106
1107
1108
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
                (Some(stream_token.token.text), None)
            };

1109
1110
1111
1112
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
1113
1114
                    content,
                    tool_calls,
1115
                    current_time,
1116
                    logprobs,
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

1128
1129
1130
1131
1132
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1133
            span,
1134
1135
        )
        .await;
1136
1137
1138
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1139
1140
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1141
1142
1143
1144
1145
1146

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;
1159
            let tool_calls = vec![ToolCall {
drbh's avatar
drbh committed
1160
1161
1162
1163
                id: 0,
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
                    name: gen_text_value
                        .get("function")
                        .and_then(|f| f.get("_name"))
                        .and_then(|name| name.as_str())
                        .unwrap_or("default_function_name")
                        .to_string(),
                    // Serialize the JSON object obtained from "function" to an escaped JSON string
                    arguments: gen_text_value
                        .get("function")
                        .map(|f| {
                            let mut f_cloned = f.clone();
                            if let Value::Object(ref mut props) = f_cloned {
                                props.remove("_name");
                            }
                            f_cloned
                        })
                        .unwrap_or_default(),
drbh's avatar
drbh committed
1181
                },
1182
1183
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1184
1185
1186
        } else {
            (None, Some(generation.generated_text))
        };
1187
1188
1189
1190
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1191
            output,
1192
1193
1194
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1195
            tool_calls,
1196
1197
1198
1199
1200
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1201
1202
}

drbh's avatar
drbh committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1237
    let span = tracing::Span::current();
drbh's avatar
drbh committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1269
                generate_internal(
drbh's avatar
drbh committed
1270
                    Extension(infer.clone()),
1271
                    compute_type.clone(),
drbh's avatar
drbh committed
1272
                    Json(generate_request),
1273
                    span.clone(),
drbh's avatar
drbh committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1296
1297
1298
1299
1300
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
1301
    request_body = GenerateRequest,
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1312
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1330
        Ok(Json(TokenizeResponse(tokens)))
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1342
1343
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1344
1345
1346
1347
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
1348
1349
1350
1351
1352
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1353
1354
1355
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1356
1357
1358
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
1359
1360
    model_info: HubModelInfo,
    shard_info: ShardInfo,
1361
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1362
    max_concurrent_requests: usize,
1363
    max_best_of: usize,
1364
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1365
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1366
    max_input_length: usize,
1367
    max_total_tokens: usize,
1368
    waiting_served_ratio: f32,
1369
    max_batch_prefill_tokens: u32,
1370
    max_batch_total_tokens: u32,
1371
    max_waiting_tokens: usize,
1372
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1373
    client: ShardedClient,
1374
    tokenizer: Option<Tokenizer>,
1375
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1376
1377
    validation_workers: usize,
    addr: SocketAddr,
1378
    allow_origin: Option<AllowOrigin>,
1379
1380
    ngrok: bool,
    ngrok_authtoken: Option<String>,
1381
    ngrok_edge: Option<String>,
1382
    tokenizer_config: HubTokenizerConfig,
1383
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1384
    grammar_support: bool,
1385
    max_client_batch_size: usize,
1386
) -> Result<(), axum::BoxError> {
1387
1388
1389
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1390
1391
1392
1393
1394
1395
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1396
    chat_completions,
1397
    completions,
1398
    tokenize,
1399
1400
1401
1402
1403
1404
1405
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1406
    GrammarType,
1407
1408
    ChatRequest,
    Message,
1409
    ChatCompletionComplete,
1410
1411
1412
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1413
1414
1415
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1416
    ChatCompletion,
1417
1418
1419
    CompletionRequest,
    CompletionComplete,
    CompletionCompleteChunk,
1420
1421
1422
1423
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1424
1425
    TokenizeResponse,
    SimpleToken,
1426
1427
1428
1429
1430
1431
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1432
    GrammarType,
1433
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1434
1435
1436
1437
1438
1439
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1452
1453
1454
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1455
    // Create state
1456
1457
1458
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1459
        config,
1460
        max_best_of,
1461
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1462
        max_top_n_tokens,
1463
1464
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
1465
        grammar_support,
1466
    );
1467
1468
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
1469
1470
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1471
        validation,
1472
        waiting_served_ratio,
1473
        max_batch_prefill_tokens,
1474
        max_batch_total_tokens,
1475
        max_waiting_tokens,
1476
        max_batch_size,
1477
        max_concurrent_requests,
1478
        shard_info.requires_padding,
1479
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1480
        shard_info.speculate,
1481
        generation_health,
1482
        tokenizer_config,
1483
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1484

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1513
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1514
1515
1516
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1517

1518
    // Prometheus handler
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1529
1530
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1531
        .unwrap();
1532
1533
1534
1535
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1536
1537
1538
1539
1540
1541
1542
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1558
        max_batch_size,
1559
        validation_workers,
1560
        max_client_batch_size,
1561
1562
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1563
        docker_label: option_env!("DOCKER_LABEL"),
1564
1565
    };

drbh's avatar
drbh committed
1566
1567
1568
1569
1570
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1571
1572
1573
1574
1575
1576
1577
1578
1579
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1580
            // limiting mutability to the smallest scope necessary
1581
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1582
1583
1584
1585
1586
1587
1588
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1589
    // Configure Swagger UI
drbh's avatar
drbh committed
1590
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1591
1592
1593

    // Define base and health routes
    let base_routes = Router::new()
1594
        .route("/", post(compat_generate))
1595
        .route("/", get(health))
1596
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1597
        .route("/generate", post(generate))
1598
        .route("/generate_stream", post(generate_stream))
1599
        .route("/v1/chat/completions", post(chat_completions))
1600
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1601
        .route("/vertex", post(vertex_compatibility))
1602
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1603
        .route("/health", get(health))
1604
        .route("/ping", get(health))
1605
1606
1607
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1608
    let aws_sagemaker_route = if messages_api_enabled {
1609
1610
1611
1612
1613
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1614
1615
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1616

1617
    // Combine routes and layers
drbh's avatar
drbh committed
1618
    let mut app = Router::new()
1619
1620
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1639
        .layer(Extension(info))
1640
        .layer(Extension(health_ext.clone()))
1641
1642
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1643
        .layer(Extension(compute_type))
1644
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1645
        .layer(OtelAxumLayer::default())
1646
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1647

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1658
1659
1660
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1661
1662
1663
1664
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1665
1666
                .labeled_tunnel()
                .label("edge", edge);
1667
1668

            let listener = tunnel.listen().await.unwrap();
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1684
1685
1686
1687
1688
1689

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1690
                .await?;
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1707
            .await?;
1708
    }
1709
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1710
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1737
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1738
}
1739

1740
1741
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1742
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1743
1744
1745
1746
1747
1748
1749
1750
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1751
1752
1753
1754
1755
1756
1757
1758
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1759
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1760
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1761
1762
1763
1764
1765
1766
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1767
                error_type: err.error_type().to_string(),
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1778
                error_type: err.error_type().to_string(),
1779
1780
1781
1782
            })
            .unwrap()
    }
}