server.rs 99.1 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
use crate::config::Config;
Nicolas Patry's avatar
Nicolas Patry committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
10
use crate::validation::ValidationError;
drbh's avatar
drbh committed
11
use crate::{default_tool_prompt, ChatTokenizeResponse};
12
use crate::{
13
14
15
16
17
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamResponse, TextMessage, Token,
    TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
18
19
20
21
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
22
23
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
24
    VertexResponse,
25
};
drbh's avatar
drbh committed
26
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
27
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use axum::extract::Extension;
Nicolas Patry's avatar
Nicolas Patry committed
29
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
30
use axum::response::sse::{Event, KeepAlive, Sse};
31
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
32
use axum::routing::{get, post};
33
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
34
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
35
use futures::stream::StreamExt;
36
use futures::stream::{FuturesOrdered, FuturesUnordered};
37
use futures::Stream;
drbh's avatar
drbh committed
38
use futures::TryStreamExt;
Nicolas Patry's avatar
Nicolas Patry committed
39
40
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
Erik Kaunismäki's avatar
Erik Kaunismäki committed
41
use http::header::AUTHORIZATION;
42
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
43
use serde_json::Value;
44
use std::convert::Infallible;
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
OlivierDehaene's avatar
OlivierDehaene committed
49
use thiserror::Error;
Nicolas Patry's avatar
Nicolas Patry committed
50
use tokenizers::processors::template::TemplateProcessing;
Olivier Dehaene's avatar
Olivier Dehaene committed
51
use tokenizers::Tokenizer;
52
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
53
use tokio::signal;
54
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
55
use tokio::time::Instant;
56
use tower_http::cors::{AllowOrigin, CorsLayer};
57
use tracing::{info_span, instrument, Instrument};
58
59
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
60

61
62
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
82
)]
83
#[instrument(skip(infer, req))]
84
async fn compat_generate(
85
    Extension(default_return_full_text): Extension<bool>,
86
    infer: Extension<Infer>,
87
    compute_type: Extension<ComputeType>,
88
    Json(mut req): Json<CompatGenerateRequest>,
89
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
90
91
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
92
        req.parameters.return_full_text = Some(default_return_full_text)
93
94
    }

95
96
    // switch on stream
    if req.stream {
97
        Ok(generate_stream(infer, compute_type, Json(req.into()))
98
99
100
            .await
            .into_response())
    } else {
101
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
102
        // wrap generation inside a Vec to match api-inference
103
        Ok((headers, Json(vec![generation])).into_response())
104
105
106
    }
}

107
108
/// Text Generation Inference endpoint info
#[utoipa::path(
109
110
111
112
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
113
114
)]
#[instrument]
115
116
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
117
118
}

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<ChatRequest>,
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

    let ChatRequest {
        model,
        max_tokens,
        messages,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
        temperature,
        response_format,
144
        guideline,
145
146
147
148
        ..
    } = req;

    let tool_prompt = tool_prompt.unwrap_or_default();
drbh's avatar
drbh committed
149
    let (inputs, _grammar, _using_tools) = prepare_chat_input(
150
151
152
153
154
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
155
        guideline,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        messages,
    )?;

    let generate_request = GenerateRequest {
        inputs,
        parameters: GenerateParameters {
            best_of: None,
            temperature,
            repetition_penalty: None,
            frequency_penalty: None,
            top_k: None,
            top_p: None,
            typical_p: None,
            do_sample: true,
            max_new_tokens: max_tokens,
            return_full_text: None,
            stop: stop.unwrap_or_default(),
            truncate: None,
            watermark: false,
            details: false,
            decoder_input_details: !stream,
            seed,
            top_n_tokens: None,
            grammar: _grammar,
            adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
        },
    };

    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

222
#[utoipa::path(
223
224
225
226
227
228
229
230
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
231
)]
Nicolas Patry's avatar
Nicolas Patry committed
232
#[instrument(skip(infer))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
233
/// Health check method
Nicolas Patry's avatar
Nicolas Patry committed
234
235
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
236
237
238
239
240
241
242
243
244
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
245
246
}

247
248
/// Generate tokens
#[utoipa::path(
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
264
)]
265
#[instrument(
266
267
skip_all,
fields(
268
parameters = ? req.parameters,
269
270
271
272
273
274
275
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
276
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
277
async fn generate(
278
    infer: Extension<Infer>,
279
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
280
    Json(req): Json<GenerateRequest>,
281
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
282
    let span = tracing::Span::current();
283
284
285
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

286
pub(crate) async fn generate_internal(
287
288
289
290
291
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
292
    let start_time = Instant::now();
293
    metrics::counter!("tgi_request_count").increment(1);
294

295
296
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
297

298
    let compute_characters = req.inputs.chars().count();
299
    let mut add_prompt = None;
300
301
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
302
303
    }

Nicolas Patry's avatar
Nicolas Patry committed
304
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
305
306

    // Inference
307
    let (response, best_of_responses) = match req.parameters.best_of {
308
        Some(best_of) if best_of > 1 => {
309
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
310
311
            (response, Some(best_of_responses))
        }
312
        _ => (infer.generate(req).await?, None),
313
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
314

OlivierDehaene's avatar
OlivierDehaene committed
315
    // Token details
316
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
317
    let details = match details {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
332
                            finish_reason: response.generated_text.finish_reason,
333
334
335
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
336
                            top_tokens: response.top_tokens,
337
338
339
340
341
342
343
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
344
                finish_reason: response.generated_text.finish_reason,
345
346
347
348
349
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
350
                top_tokens: response.top_tokens,
351
352
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
353
354
355
        false => None,
    };

356
357
358
359
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
360
361
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
362

363
364
365
366
367
368
369
370
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

371
372
    // Headers
    let mut headers = HeaderMap::new();
373
    headers.insert("x-compute-type", compute_type.parse().unwrap());
374
375
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
376
        total_time.as_secs_f64().to_string().parse().unwrap(),
377
378
379
380
381
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
382
383
384
385
386
387
388
389
390
391
392
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
393
    );
394
395
396
397
398
399
400
401
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
402
403
404
405
406
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
407

408
    // Metrics
409
410
411
412
413
414
415
416
417
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
418

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
419
    // Send response
420
421
422
423
424
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

425
426
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
427

428
    let response = GenerateResponse {
429
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
430
        details,
431
    };
432
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
433
434
}

Yannic Kilcher's avatar
Yannic Kilcher committed
435
/// Generate a stream of token using Server-Sent Events
436
#[utoipa::path(
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
457
)]
458
#[instrument(
459
460
skip_all,
fields(
461
parameters = ? req.parameters,
462
463
464
465
466
467
468
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
469
470
)]
async fn generate_stream(
471
    Extension(infer): Extension<Infer>,
472
    Extension(compute_type): Extension<ComputeType>,
473
    Json(req): Json<GenerateRequest>,
474
475
476
477
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
478
    let span = tracing::Span::current();
479
480
481
482
483
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
484
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
485
486
487
488
489
490
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
491
    ComputeType(compute_type): ComputeType,
492
493
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
494
    span: tracing::Span,
495
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
496
    let start_time = Instant::now();
497
    metrics::counter!("tgi_request_count").increment(1);
498

499
    tracing::debug!("Input: {}", req.inputs);
500

501
    let compute_characters = req.inputs.chars().count();
502
503

    let mut headers = HeaderMap::new();
504
    headers.insert("x-compute-type", compute_type.parse().unwrap());
505
506
507
508
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
509
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
510

511
512
513
514
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
515
516

        let mut add_prompt = None;
517
518
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
519
        }
520
        let details = req.parameters.details;
521

522
        let best_of = req.parameters.best_of.unwrap_or(1);
523
524
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
525
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
526
527
            tracing::error!("{err}");
            yield Ok(Event::from(err));
528
        } else if req.parameters.decoder_input_details {
529
            let err = InferError::from(ValidationError::PrefillDetailsStream);
530
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
531
532
533
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
534
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
535
                // Keep permit as long as generate_stream lives
536
                Ok((_permit, input_length, response_stream)) => {
537
                    let mut index = 0;
Nicolas Patry's avatar
Nicolas Patry committed
538
                    let mut response_stream = Box::pin(response_stream);
539
540
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
541
                        index += 1;
542
543
544
545
546
547
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
548
549
550
551
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
552
553
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

554
555
                                        // StreamResponse
                                        let stream_token = StreamResponse {
556
                                            index,
557
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
558
                                            top_tokens,
559
560
561
                                            generated_text: None,
                                            details: None,
                                        };
562
563
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
564
                                    }
565
566
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
567
                                        token,
568
569
570
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
571
                                        top_tokens,
572
573
574
575
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
576
                                                finish_reason: generated_text.finish_reason,
577
578
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
579
                                                input_length,
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
600
601
602
603
604
605
606
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
607
608
609
610
611
612
613
614
615

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

616
617
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
618

619
                                        let stream_token = StreamResponse {
620
                                            index,
621
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
622
                                            top_tokens,
623
624
625
626
                                            generated_text: Some(output_text),
                                            details
                                        };

627
628
629

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
630
631
                                        break;
                                    }
632
633
                                }
                            }
634
635
636
637
638
639
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
640
641
                        }
                    }
642
643
644
645
646
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
647
                }
648
649
650
651
652
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
653
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
654
                tracing::error!("{err}");
655
                yield Ok(Event::from(err));
656
657
658
659
            }
        }
    };

660
661
662
    (headers, stream)
}

663
664
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
665
666
667
668
669
670
671
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
672
673
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
674
675
676
677
678
679
680
681
682
683
684
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
685
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
686
687
688
689
690
691
692
693
694
695
696
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
697
698
699
700
701
702
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
703
    let span = tracing::Span::current();
704
    metrics::counter!("tgi_request_count").increment(1);
705

706
    let CompletionRequest {
707
        model,
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
723
724
725

    // if suffix is present throw an error
    if req.suffix.is_some() {
726
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
727
728
729
730
731
732
733
734
735
736
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

737
    if req.prompt.0.len() > info.max_client_batch_size {
738
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
753
        .0
754
755
756
757
758
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
759
                temperature,
760
761
762
763
764
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
765
                do_sample,
766
767
                max_new_tokens,
                return_full_text: None,
768
                stop: stop.clone(),
769
770
771
772
773
774
775
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
776
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
777
778
779
780
781
782
783
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
784
785

    if stream {
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
                    let message = match stream_token.details {
                        Some(details) => {
                            let completion_tokens = details.generated_tokens;
                            let prompt_tokens = details.input_length;
                            let total_tokens = prompt_tokens + completion_tokens;

                            Completion::Final(CompletionFinal {
                                id: String::new(),
                                created: current_time,
                                model: model_id.clone(),
                                system_fingerprint: system_fingerprint.clone(),
                                choices: vec![CompletionComplete {
                                    finish_reason: details.finish_reason.to_string(),
                                    index: index as u32,
                                    logprobs: None,
                                    text: stream_token.token.text,
                                }],
                                usage: Usage {
                                    prompt_tokens,
                                    completion_tokens,
                                    total_tokens,
                                },
                            })
                        }
                        None => Completion::Chunk(Chunk {
                            id: String::new(),
831
832
                            created: current_time,
                            choices: vec![CompletionComplete {
833
                                finish_reason: String::new(),
834
835
836
837
838
839
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],
                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
840
841
842
843
844
                        }),
                    };

                    event
                        .json_data(message)
845
                        .unwrap_or_else(|_e| Event::default())
846
847
848
849
850
851
852
853
854
855
856
857
858
859
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
860

861
862
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
893
                )
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
912

913
914
915
916
917
918
919
920
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
921

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

946
947
948
949
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

950
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
951
952
953
954
955
956
957
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
1052
                    finish_reason: details.finish_reason.format(true),
1053
1054
1055
1056
1057
1058
1059
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
1060

1061
        let response = Completion::Final(CompletionFinal {
1062
1063
1064
1065
1066
1067
1068
1069
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
1070
            choices,
1071
            usage: Usage {
1072
1073
1074
                prompt_tokens,
                completion_tokens,
                total_tokens,
1075
            },
1076
        });
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
1094
1095
1096
1097
        Ok((headers, Json(response)).into_response())
    }
}

1098
1099
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
1120
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1132
1133
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1134
    Extension(compute_type): Extension<ComputeType>,
1135
1136
1137
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1138
    let span = tracing::Span::current();
1139
    metrics::counter!("tgi_request_count").increment(1);
1140
    let ChatRequest {
1141
        model,
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1152
        temperature,
drbh's avatar
drbh committed
1153
        response_format,
1154
        guideline,
1155
1156
1157
1158
1159
1160
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
drbh's avatar
drbh committed
1161
1162
1163
    let tool_prompt = tool_prompt
        .filter(|s| !s.is_empty())
        .unwrap_or_else(default_tool_prompt);
1164
    let stop = stop.unwrap_or_default();
1165
1166
1167
1168
1169
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
drbh's avatar
drbh committed
1170
    let (inputs, grammar, using_tools) = prepare_chat_input(
1171
1172
1173
1174
1175
        &infer,
        response_format,
        tools,
        tool_choice,
        &tool_prompt,
1176
        guideline,
1177
1178
        messages,
    )?;
drbh's avatar
drbh committed
1179

1180
1181
1182
1183
1184
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1185
            temperature,
1186
            repetition_penalty,
1187
            frequency_penalty: req.frequency_penalty,
1188
            top_k: None,
1189
            top_p: req.top_p,
1190
            typical_p: None,
1191
            do_sample,
1192
1193
            max_new_tokens,
            return_full_text: None,
1194
            stop,
1195
1196
1197
            truncate: None,
            watermark: false,
            details: true,
1198
            decoder_input_details: !stream,
1199
            seed,
1200
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1201
            grammar,
1202
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1221
1222
1223
1224
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1225
            // replace the content with the tool calls if grammar is present
drbh's avatar
drbh committed
1226
            let (content, tool_calls) = if using_tools {
drbh's avatar
drbh committed
1227
1228
                (None, Some(vec![stream_token.token.text]))
            } else {
1229
1230
1231
1232
1233
1234
1235
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1236
1237
            };

1238
            event
1239
1240
1241
1242
1243
1244
1245
1246
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
1247
                        stream_token.details.map(|d| d.finish_reason.format(true)),
1248
                    ),
1249
                ))
1250
1251
1252
1253
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1254
1255
        };

1256
1257
1258
1259
1260
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1261
            span,
1262
1263
        )
        .await;
1264
1265
1266
1267
1268

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1269
1270
1271
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1272
1273
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1274
1275
1276
1277
1278
1279

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1280
        let (tool_calls, output) = if using_tools {
1281
1282
1283
1284
1285
1286
1287
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
                })?;
drbh's avatar
drbh committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1305
            let tool_calls = vec![ToolCall {
1306
                id: "0".to_string(),
drbh's avatar
drbh committed
1307
1308
1309
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1310
1311
                    name,
                    arguments,
drbh's avatar
drbh committed
1312
                },
1313
1314
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1315
1316
1317
        } else {
            (None, Some(generation.generated_text))
        };
1318
        // build the complete response object with the full text
1319
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1320
1321
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1322
            output,
1323
1324
1325
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1326
            tool_calls,
1327
        ));
1328
1329
1330
1331

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1332
1333
}

drbh's avatar
drbh committed
1334
1335
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1368
    let span = tracing::Span::current();
1369
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1400
                generate_internal(
drbh's avatar
drbh committed
1401
                    Extension(infer.clone()),
1402
                    compute_type.clone(),
drbh's avatar
drbh committed
1403
                    Json(generate_request),
1404
                    span.clone(),
drbh's avatar
drbh committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1427
1428
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1439
1440
1441
1442
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1443
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1444
1445
1446
1447
1448
1449
1450
1451
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1452
1453
1454
1455
1456
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
1457
1458
1459
1460
1461
1462
1463
1464
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1465
        Ok(Json(TokenizeResponse(tokens)))
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1477
1478
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1479
1480
1481
1482
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1483
1484
1485
1486
1487
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1488
1489
1490
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Nicolas Patry's avatar
Nicolas Patry committed
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1575
1576
1577
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
Nicolas Patry's avatar
Nicolas Patry committed
1578
    backend: impl Backend + Send + Sync + 'static,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1579
    max_concurrent_requests: usize,
1580
    max_best_of: usize,
1581
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1582
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1583
    max_input_tokens: usize,
1584
    max_total_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1585
    validation_workers: usize,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1586
    api_key: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
1587
1588
1589
1590
1591
1592
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
1593
    ngrok: bool,
1594
1595
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1596
    messages_api_enabled: bool,
Nicolas Patry's avatar
Nicolas Patry committed
1597
    disable_grammar_support: bool,
1598
    max_client_batch_size: usize,
1599
    usage_stats_level: usage_stats::UsageStatsLevel,
OlivierDehaene's avatar
OlivierDehaene committed
1600
) -> Result<(), WebServerError> {
Nicolas Patry's avatar
Nicolas Patry committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
1611

Nicolas Patry's avatar
Nicolas Patry committed
1612
1613
1614
1615
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
OlivierDehaene's avatar
OlivierDehaene committed
1616

Nicolas Patry's avatar
Nicolas Patry committed
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
OlivierDehaene's avatar
OlivierDehaene committed
1659
                }
Nicolas Patry's avatar
Nicolas Patry committed
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();
OlivierDehaene's avatar
OlivierDehaene committed
1698

Nicolas Patry's avatar
Nicolas Patry committed
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        let mut tokenizer = Tokenizer::from_file(filename).ok();
        if let Some(tokenizer) = &mut tokenizer {
            if let Some(class) = &tokenizer_config.tokenizer_class {
                if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
                    if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
                        tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
                        tokenizer.with_post_processor(post_processor);
                    }
OlivierDehaene's avatar
OlivierDehaene committed
1752
1753
                }
            }
Nicolas Patry's avatar
Nicolas Patry committed
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
        }
        tokenizer
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
OlivierDehaene's avatar
OlivierDehaene committed
1788

Nicolas Patry's avatar
Nicolas Patry committed
1789
1790
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                messages_api_enabled,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
Nicolas Patry's avatar
Nicolas Patry committed
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        messages_api_enabled,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
OlivierDehaene's avatar
OlivierDehaene committed
1870
            }
Nicolas Patry's avatar
Nicolas Patry committed
1871
            Err(e) => {
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

Nicolas Patry's avatar
Nicolas Patry committed
1884
                Err(e)
OlivierDehaene's avatar
OlivierDehaene committed
1885
1886
            }
        }
Nicolas Patry's avatar
Nicolas Patry committed
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    messages_api_enabled: bool,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
OlivierDehaene's avatar
OlivierDehaene committed
1933
1934
    };

Nicolas Patry's avatar
Nicolas Patry committed
1935
    // Create state
1936
1937
1938
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1939
        config,
1940
        preprocessor_config,
1941
        max_best_of,
1942
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1943
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1944
        max_input_tokens,
1945
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1946
        disable_grammar_support,
1947
    );
OlivierDehaene's avatar
OlivierDehaene committed
1948

1949
    let infer = Infer::new(
Nicolas Patry's avatar
Nicolas Patry committed
1950
        backend,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1951
        validation,
1952
        max_concurrent_requests,
1953
        tokenizer_config,
drbh's avatar
drbh committed
1954
        processor_config,
1955
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1956

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1971
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1985
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1986
    // Speculated tokens buckets
Nicolas Patry's avatar
Nicolas Patry committed
1987
1988
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1989

1990
    // Prometheus handler
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
Nicolas Patry's avatar
Nicolas Patry committed
2002
2003
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
2004
2005
2006
2007
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );

2122
2123
2124
2125
2126
2127
2128
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

2129
2130
2131
2132
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
Nicolas Patry's avatar
Nicolas Patry committed
2133
2134
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
2135
2136
2137
2138
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
2139
        max_input_tokens,
2140
        max_total_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
2141
2142
2143
2144
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
2145
        validation_workers,
2146
        max_client_batch_size,
2147
        router: env!("CARGO_PKG_NAME"),
2148
2149
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
2150
        docker_label: option_env!("DOCKER_LABEL"),
2151
2152
    };

2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
2190
                kserve_model_infer,
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
2205

2206
    // Configure Swagger UI
drbh's avatar
drbh committed
2207
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
2208
2209

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2210
    let mut base_routes = Router::new()
2211
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
2212
        .route("/generate", post(generate))
2213
        .route("/generate_stream", post(generate_stream))
2214
        .route("/v1/chat/completions", post(chat_completions))
2215
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
2216
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
2245
        .route("/chat_tokenize", post(get_chat_tokenize))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2246
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2247
        .route("/health", get(health))
2248
        .route("/ping", get(health))
2249
2250
2251
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
2252
    let aws_sagemaker_route = if messages_api_enabled {
2253
2254
2255
2256
2257
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

2258
2259
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
2260

2261
    // Combine routes and layers
drbh's avatar
drbh committed
2262
    let mut app = Router::new()
2263
2264
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
2265
        .merge(info_routes)
drbh's avatar
drbh committed
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
2303
2304
    // add layers after routes
    app = app
2305
        .layer(Extension(info))
2306
2307
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
2308
        .layer(Extension(compute_type))
2309
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
2310
        .layer(OtelAxumLayer::default())
2311
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
2312

OlivierDehaene's avatar
OlivierDehaene committed
2313
2314
    tracing::info!("Connected");

2315
2316
2317
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
2318
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
2333
2334
2335

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
2336
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
2337
2338
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
2339
    }
2340
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
2341
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2342

Nicolas Patry's avatar
Nicolas Patry committed
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
2430
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
2431
}
2432
2433
2434
2435
2436
2437
2438
2439
2440

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
2441
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2442
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
2443
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
2444
2445
2446
2447
2448
2449
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
2450
                error_type: err.error_type().to_string(),
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2461
                error_type: err.error_type().to_string(),
2462
2463
2464
2465
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2466
2467
2468
2469
2470
2471

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
Nicolas Patry's avatar
Nicolas Patry committed
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542

/// Create a post_processor for the LlamaTokenizer
fn create_post_processor(
    tokenizer: &Tokenizer,
    tokenizer_config: &HubTokenizerConfig,
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
    let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
    let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);

    let bos_token = tokenizer_config.bos_token.as_ref();
    let eos_token = tokenizer_config.eos_token.as_ref();

    if add_bos_token && bos_token.is_none() {
        panic!("add_bos_token = true but bos_token is None");
    }

    if add_eos_token && eos_token.is_none() {
        panic!("add_eos_token = true but eos_token is None");
    }

    let mut single = Vec::new();
    let mut pair = Vec::new();
    let mut special_tokens = Vec::new();

    if add_bos_token {
        if let Some(bos) = bos_token {
            let bos_token_id = tokenizer
                .token_to_id(bos.as_str())
                .expect("Should have found the bos token id");
            special_tokens.push((bos.as_str(), bos_token_id));
            single.push(format!("{}:0", bos.as_str()));
            pair.push(format!("{}:0", bos.as_str()));
        }
    }

    single.push("$A:0".to_string());
    pair.push("$A:0".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            let eos_token_id = tokenizer
                .token_to_id(eos.as_str())
                .expect("Should have found the eos token id");
            special_tokens.push((eos.as_str(), eos_token_id));
            single.push(format!("{}:0", eos.as_str()));
            pair.push(format!("{}:0", eos.as_str()));
        }
    }

    if add_bos_token {
        if let Some(bos) = bos_token {
            pair.push(format!("{}:1", bos.as_str()));
        }
    }

    pair.push("$B:1".to_string());

    if add_eos_token {
        if let Some(eos) = eos_token {
            pair.push(format!("{}:1", eos.as_str()));
        }
    }

    let post_processor = TemplateProcessing::builder()
        .try_single(single)?
        .try_pair(pair)?
        .special_tokens(special_tokens)
        .build()?;

    Ok(post_processor)
}
2543

drbh's avatar
drbh committed
2544
type PreparedInput = (String, Option<GrammarType>, bool);
2545
2546
2547
2548
2549
2550
2551

fn prepare_chat_input(
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
2552
    guideline: Option<String>,
2553
2554
2555
2556
2557
2558
2559
2560
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

drbh's avatar
drbh committed
2561
    // when response_format is set, tools are not included when applying the chat template to generate inputs
2562
    if let Some(format) = response_format {
2563
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
drbh's avatar
drbh committed
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
2582
2583
    }

drbh's avatar
drbh committed
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
        let (inputs, _grammar, using_tools) = result.unwrap();
        assert_eq!(using_tools, true);
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"error\":{\"description\":\"The error or issue to notify\",\"type\":\"string\"}},\"required\":[\"error\"],\"type\":\"object\"}, \"description\": \"Notify an error or issue\", \"name\": \"notify_error\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
    }
2696
}