server.rs 54.9 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
7
8
9
10
11
12
13
14
15
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
    GenerateResponse, GrammarType, HubModelInfo, HubTokenizerConfig, Infer, Info, Message,
    PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Usage,
    Validation,
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
    CompletionRequest, VertexRequest, VertexResponse,
16
};
drbh's avatar
drbh committed
17
use crate::{FunctionDefinition, FunctionRef, FunctionsMap, Properties, ToolCall, ToolType, Tools};
Olivier Dehaene's avatar
Olivier Dehaene committed
18
use axum::extract::Extension;
19
use axum::http::{HeaderMap, Method, StatusCode};
20
use axum::response::sse::{Event, KeepAlive, Sse};
21
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
22
use axum::routing::{get, post};
23
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
24
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
drbh's avatar
drbh committed
25
use futures::stream::FuturesUnordered;
26
use futures::stream::StreamExt;
27
use futures::Stream;
drbh's avatar
drbh committed
28
use futures::TryStreamExt;
29
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
30
31
use serde_json::Value;
use std::collections::HashMap;
32
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use std::net::SocketAddr;
34
35
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
36
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
37
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
38
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
39
use tokio::time::Instant;
40
use tower_http::cors::{AllowOrigin, CorsLayer};
41
use tracing::{info_span, instrument, Instrument};
42
43
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
44

45
46
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
66
)]
67
#[instrument(skip(infer, req))]
68
async fn compat_generate(
69
    Extension(default_return_full_text): Extension<bool>,
70
    infer: Extension<Infer>,
71
    compute_type: Extension<ComputeType>,
72
    Json(mut req): Json<CompatGenerateRequest>,
73
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
74
75
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
76
        req.parameters.return_full_text = Some(default_return_full_text)
77
78
    }

79
80
    // switch on stream
    if req.stream {
81
        Ok(generate_stream(infer, compute_type, Json(req.into()))
82
83
84
            .await
            .into_response())
    } else {
85
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
86
        // wrap generation inside a Vec to match api-inference
87
        Ok((headers, Json(vec![generation])).into_response())
88
89
90
    }
}

91
92
/// Text Generation Inference endpoint info
#[utoipa::path(
93
94
95
96
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
97
98
)]
#[instrument]
99
100
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
101
102
}

103
#[utoipa::path(
104
105
106
107
108
109
110
111
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
112
113
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
114
/// Health check method
115
116
117
118
119
120
121
122
123
124
125
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
126
127
}

128
129
/// Generate tokens
#[utoipa::path(
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
145
)]
146
#[instrument(
147
148
skip_all,
fields(
149
parameters = ? req.parameters,
150
151
152
153
154
155
156
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
157
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
158
async fn generate(
159
    infer: Extension<Infer>,
160
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
161
    Json(req): Json<GenerateRequest>,
162
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
163
    let span = tracing::Span::current();
164
    let start_time = Instant::now();
165
    metrics::increment_counter!("tgi_request_count");
166

167
    tracing::debug!("Input: {}", req.inputs);
168

169
    let compute_characters = req.inputs.chars().count();
170
    let mut add_prompt = None;
171
172
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
173
174
    }

Nicolas Patry's avatar
Nicolas Patry committed
175
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
176
177

    // Inference
178
    let (response, best_of_responses) = match req.parameters.best_of {
179
        Some(best_of) if best_of > 1 => {
180
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
181
182
            (response, Some(best_of_responses))
        }
183
        _ => (infer.generate(req).await?, None),
184
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
185

OlivierDehaene's avatar
OlivierDehaene committed
186
    // Token details
187
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
188
    let details = match details {
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
209
                            top_tokens: response.top_tokens,
210
211
212
213
214
215
216
217
218
219
220
221
222
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
223
                top_tokens: response.top_tokens,
224
225
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
226
227
228
        false => None,
    };

229
230
231
232
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
233
234
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
235

236
237
238
239
240
241
242
243
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

244
245
    // Headers
    let mut headers = HeaderMap::new();
246
    headers.insert("x-compute-type", compute_type.parse().unwrap());
247
248
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
249
        total_time.as_secs_f64().to_string().parse().unwrap(),
250
251
252
253
254
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
255
256
257
258
259
260
261
262
263
264
265
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
266
    );
267
268
269
270
271
272
273
274
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
275
276
277
278
279
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
280

281
282
    // Metrics
    metrics::increment_counter!("tgi_request_success");
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
297
298
299
300
301
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
302
    // Send response
303
304
305
306
307
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

308
309
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
310

311
    let response = GenerateResponse {
312
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
313
        details,
314
    };
315
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
316
317
}

Yannic Kilcher's avatar
Yannic Kilcher committed
318
/// Generate a stream of token using Server-Sent Events
319
#[utoipa::path(
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
340
)]
341
#[instrument(
342
343
skip_all,
fields(
344
parameters = ? req.parameters,
345
346
347
348
349
350
351
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
352
353
)]
async fn generate_stream(
354
    Extension(infer): Extension<Infer>,
355
    Extension(compute_type): Extension<ComputeType>,
356
    Json(req): Json<GenerateRequest>,
357
358
359
360
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
361
362
363
364
365
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
366
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
367
368
369
370
371
372
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
373
    ComputeType(compute_type): ComputeType,
374
375
376
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
377
378
    let span = tracing::Span::current();
    let start_time = Instant::now();
379
    metrics::increment_counter!("tgi_request_count");
380

381
    tracing::debug!("Input: {}", req.inputs);
382

383
    let compute_characters = req.inputs.chars().count();
384
385

    let mut headers = HeaderMap::new();
386
    headers.insert("x-compute-type", compute_type.parse().unwrap());
387
388
389
390
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
391
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
392

393
394
395
396
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
397
398

        let mut add_prompt = None;
399
400
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
401
        }
402
        let details = req.parameters.details;
403

404
        let best_of = req.parameters.best_of.unwrap_or(1);
405
406
407
408
409
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
410
        } else if req.parameters.decoder_input_details {
411
412
413
414
415
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
416
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
417
                // Keep permit as long as generate_stream lives
418
                Ok((_permit, _input_length, mut response_stream)) => {
419
                    let mut index = 0;
420
421
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
422
                        index += 1;
423
424
425
426
427
428
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
429
430
431
432
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
433
434
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

435
436
                                        // StreamResponse
                                        let stream_token = StreamResponse {
437
                                            index,
438
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
439
                                            top_tokens,
440
441
442
                                            generated_text: None,
                                            details: None,
                                        };
443
444
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
445
                                    }
446
447
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
448
                                        token,
449
450
451
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
452
                                        top_tokens,
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
481
482
483
484
485
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
486
487
488
489
490
491
492
493
494
495
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

496
497
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
498

499
                                        let stream_token = StreamResponse {
500
                                            index,
501
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
502
                                            top_tokens,
503
504
505
506
                                            generated_text: Some(output_text),
                                            details
                                        };

507
508
509

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
510
511
                                        break;
                                    }
512
513
                                }
                            }
514
515
516
517
518
519
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
520
521
                        }
                    }
522
523
524
525
526
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
527
                }
528
529
530
531
532
533
534
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
535
                yield Ok(Event::from(err));
536
537
538
539
            }
        }
    };

540
541
542
    (headers, stream)
}

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/completions",
    request_body = CompletionRequest,
    responses(
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let seed = req.seed;

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: req.prompt.to_string(),
        parameters: GenerateParameters {
            best_of: None,
            temperature: req.temperature,
            repetition_penalty: req.repetition_penalty,
            frequency_penalty: req.frequency_penalty,
            top_k: None,
            top_p: req.top_p,
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
            decoder_input_details: !stream,
            seed,
            top_n_tokens: None,
            grammar: None,
        },
    };

    if stream {
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

            event
                .json_data(CompletionCompleteChunk {
                    id: "".to_string(),
                    object: "text_completion".to_string(),
                    created: current_time,

                    choices: vec![CompletionComplete {
                        finish_reason: "".to_string(),
                        index: 0,
                        logprobs: None,
                        text: stream_token.token.text,
                    }],

                    model: info.model_id.clone(),
                    system_fingerprint: format!(
                        "{}-{}",
                        info.version,
                        info.docker_label.unwrap_or("native")
                    ),
                })
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;

        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        let details = generation.details.ok_or((
            // this should never happen but handle if details are missing unexpectedly
            StatusCode::INTERNAL_SERVER_ERROR,
            Json(ErrorResponse {
                error: "No details in generation".to_string(),
                error_type: "no details".to_string(),
            }),
        ))?;

        let response = Completion {
            id: "".to_string(),
            object: "text_completion".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
            choices: vec![CompletionComplete {
                finish_reason: details.finish_reason.to_string(),
                index: 0,
                logprobs: None,
                text: generation.generated_text,
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        };

        Ok((headers, Json(response)).into_response())
    }
}

720
721
722
723
724
725
726
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
727
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
752
    Extension(compute_type): Extension<ComputeType>,
753
754
755
756
757
758
759
760
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
761
762
        .presence_penalty
        // rescale repetition_penalty from (-2.0, 2.0) to (0.0, 4.0)
763
764
765
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;
766
    let stop = req.stop.unwrap_or_default();
767
768

    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
769
    let mut inputs = match infer.apply_chat_template(req.messages) {
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    let tool_grammar = if let Some((req_tools, tool_choice)) = req.tools.zip(req.tool_choice) {
        let tool_prompt = req.tool_prompt.unwrap_or_default();
        let tools_to_use = match tool_choice {
            ToolType::FunctionName(name) => {
                vec![req_tools
                    .iter()
                    .find(|tool| tool.function.name == *name)
                    .ok_or_else(|| {
                        (
                            StatusCode::UNPROCESSABLE_ENTITY,
                            Json(ErrorResponse {
                                error: "Tool choice not found in tool names".to_string(),
                                error_type: "Tool not found".to_string(),
                            }),
                        )
                    })?
                    .clone()]
            }
            ToolType::OneOf => req_tools.to_owned(),
        };

        let functions: HashMap<String, Value> = tools_to_use
            .iter()
            .map(|tool| {
                let func = tool.function.clone();
                (func.name, func.parameters)
            })
            .collect();

        let tools = Tools {
            functions_map: FunctionsMap { functions },
            properties: Properties {
                function: tools_to_use
                    .iter()
                    .map(|tool| FunctionRef {
                        ref_path: format!("#/$functions/{}", tool.function.name.clone()),
                    })
                    .collect(),
            },
        };

        let tools_str = serde_json::to_string(&tools).map_err(|e| {
            (
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: e.to_string(),
                    error_type: "Input validation error".to_string(),
                }),
            )
        })?;
        inputs = format!("{inputs}{tool_prompt}{tools_str}");
        Some(GrammarType::Json(serde_json::json!(tools)))
    } else {
        None
    };

840
841
842
843
844
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
845
            temperature: req.temperature,
846
            repetition_penalty,
847
            frequency_penalty: req.frequency_penalty,
848
            top_k: None,
849
            top_p: req.top_p,
850
851
852
853
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
854
            stop,
855
856
857
            truncate: None,
            watermark: false,
            details: true,
858
            decoder_input_details: !stream,
859
860
            seed,
            top_n_tokens: None,
drbh's avatar
drbh committed
861
            grammar: tool_grammar.clone(),
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

880
881
882
883
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
884
885
886
887
888
889
890
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
                (Some(stream_token.token.text), None)
            };

891
892
893
894
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
895
896
                    content,
                    tool_calls,
897
                    current_time,
898
                    logprobs,
899
900
901
902
903
904
905
906
907
908
909
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

910
911
912
913
914
915
916
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;
917
918
919
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
920
921
922
923
924
925
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;
926
927
928
929
930
931

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;

            let tool_call = Some(ToolCall {
                id: 0,
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "tools".to_string(),
                    parameters: gen_text_value.get("function").map_or_else(
                        || {
                            serde_json::from_str(&generation.generated_text).map_err(|e| {
                                (
                                    StatusCode::UNPROCESSABLE_ENTITY,
                                    Json(ErrorResponse {
                                        error: e.to_string(),
                                        error_type: "Input validation error".to_string(),
                                    }),
                                )
                            })
                        },
                        |f| Ok(f.clone()),
                    )?,
                },
            });
            (tool_call, None)
        } else {
            (None, Some(generation.generated_text))
        };
971
972
973
974
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
975
            output,
976
977
978
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
979
            tool_calls,
980
981
982
983
984
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
985
986
}

drbh's avatar
drbh committed
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
                generate(
                    Extension(infer.clone()),
                    Extension(compute_type.clone()),
                    Json(generate_request),
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1078
1079
1080
1081
1082
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
1083
    request_body = GenerateRequest,
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1094
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1112
        Ok(Json(TokenizeResponse(tokens)))
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1124
1125
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1126
1127
1128
1129
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
1130
1131
1132
1133
1134
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1135
1136
1137
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1138
1139
1140
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
1141
1142
    model_info: HubModelInfo,
    shard_info: ShardInfo,
1143
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1144
    max_concurrent_requests: usize,
1145
    max_best_of: usize,
1146
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1147
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1148
    max_input_length: usize,
1149
    max_total_tokens: usize,
1150
    waiting_served_ratio: f32,
1151
    max_batch_prefill_tokens: u32,
1152
    max_batch_total_tokens: u32,
1153
    max_waiting_tokens: usize,
1154
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1155
    client: ShardedClient,
1156
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1157
1158
    validation_workers: usize,
    addr: SocketAddr,
1159
    allow_origin: Option<AllowOrigin>,
1160
1161
    ngrok: bool,
    ngrok_authtoken: Option<String>,
1162
    ngrok_edge: Option<String>,
1163
    tokenizer_config: HubTokenizerConfig,
1164
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1165
    grammar_support: bool,
1166
) -> Result<(), axum::BoxError> {
1167
1168
1169
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1170
1171
1172
1173
1174
1175
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1176
    chat_completions,
1177
    completions,
1178
    tokenize,
1179
1180
1181
1182
1183
1184
1185
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1186
    GrammarType,
1187
1188
    ChatRequest,
    Message,
1189
    ChatCompletionComplete,
1190
1191
1192
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1193
1194
1195
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1196
    ChatCompletion,
1197
1198
1199
    CompletionRequest,
    CompletionComplete,
    CompletionCompleteChunk,
1200
1201
1202
1203
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1204
1205
    TokenizeResponse,
    SimpleToken,
1206
1207
1208
1209
1210
1211
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1212
    GrammarType,
1213
    Usage,
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1226
1227
1228
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1229
    // Create state
1230
1231
1232
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1233
        max_best_of,
1234
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1235
        max_top_n_tokens,
1236
1237
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
1238
        grammar_support,
1239
    );
1240
1241
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
1242
1243
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1244
        validation,
1245
        waiting_served_ratio,
1246
        max_batch_prefill_tokens,
1247
        max_batch_total_tokens,
1248
        max_waiting_tokens,
1249
        max_batch_size,
1250
        max_concurrent_requests,
1251
        shard_info.requires_padding,
1252
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1253
        shard_info.speculate,
1254
        generation_health,
1255
        tokenizer_config,
1256
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1257

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1286
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1287
1288
1289
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1290

1291
    // Prometheus handler
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1302
1303
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1304
        .unwrap();
1305
1306
1307
1308
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1309
1310
1311
1312
1313
1314
1315
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1331
        max_batch_size,
1332
1333
1334
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1335
        docker_label: option_env!("DOCKER_LABEL"),
1336
1337
    };

drbh's avatar
drbh committed
1338
1339
1340
1341
1342
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1343
1344
1345
1346
1347
1348
1349
1350
1351
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1352
            // limiting mutability to the smallest scope necessary
1353
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1354
1355
1356
1357
1358
1359
1360
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1361
    // Configure Swagger UI
drbh's avatar
drbh committed
1362
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1363
1364
1365

    // Define base and health routes
    let base_routes = Router::new()
1366
        .route("/", post(compat_generate))
1367
        .route("/", get(health))
1368
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1369
        .route("/generate", post(generate))
1370
        .route("/generate_stream", post(generate_stream))
1371
        .route("/v1/chat/completions", post(chat_completions))
1372
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1373
        .route("/vertex", post(vertex_compatibility))
1374
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1375
        .route("/health", get(health))
1376
        .route("/ping", get(health))
1377
1378
1379
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1380
    let aws_sagemaker_route = if messages_api_enabled {
1381
1382
1383
1384
1385
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1386
1387
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1388

1389
    // Combine routes and layers
drbh's avatar
drbh committed
1390
    let mut app = Router::new()
1391
1392
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1411
        .layer(Extension(info))
1412
        .layer(Extension(health_ext.clone()))
1413
1414
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1415
        .layer(Extension(compute_type))
1416
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1417
        .layer(OtelAxumLayer::default())
1418
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1419

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1430
1431
1432
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1433
1434
1435
1436
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1437
1438
                .labeled_tunnel()
                .label("edge", edge);
1439
1440

            let listener = tunnel.listen().await.unwrap();
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1456
1457
1458
1459
1460
1461

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1462
                .await?;
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1479
            .await?;
1480
    }
1481
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1482
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1509
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1510
}
1511

1512
1513
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1514
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1515
1516
1517
1518
1519
1520
1521
1522
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1523
1524
1525
1526
1527
1528
1529
1530
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1531
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1532
1533
1534
1535
1536
1537
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1538
                error_type: err.error_type().to_string(),
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1549
                error_type: err.error_type().to_string(),
1550
1551
1552
1553
            })
            .unwrap()
    }
}