server.rs 30.1 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
    BestOfSequence, CompatGenerateRequest, Details, ErrorResponse, FinishReason,
7
    GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info, PrefillToken,
8
    StreamDetails, StreamResponse, Token, Validation,
9
};
Olivier Dehaene's avatar
Olivier Dehaene committed
10
use axum::extract::Extension;
11
use axum::http::{HeaderMap, Method, StatusCode};
12
use axum::response::sse::{Event, KeepAlive, Sse};
13
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use axum::routing::{get, post};
15
use axum::{http, Json, Router};
16
use axum_tracing_opentelemetry::opentelemetry_tracing_layer;
17
use futures::stream::StreamExt;
18
use futures::Stream;
19
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
20
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
21
use std::net::SocketAddr;
22
23
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
24
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
25
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
26
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
27
use tokio::time::Instant;
28
use tower_http::cors::{AllowOrigin, CorsLayer};
29
use tracing::{info_span, instrument, Instrument};
30
31
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
32

33
34
35
36
37
38
39
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/",
    request_body = CompatGenerateRequest,
    responses(
40
        (status = 200, description = "Generated Text",
41
42
43
44
            content(
                ("application/json" = GenerateResponse),
                ("text/event-stream" = StreamResponse),
            )),
45
46
47
48
49
50
51
52
53
54
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"})),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"})),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"})),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"})),
    )
)]
55
#[instrument(skip(infer, req))]
56
async fn compat_generate(
57
    default_return_full_text: Extension<bool>,
58
59
    infer: Extension<Infer>,
    req: Json<CompatGenerateRequest>,
60
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
61
62
63
64
65
66
67
    let mut req = req.0;

    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
        req.parameters.return_full_text = Some(default_return_full_text.0)
    }

68
69
70
71
72
73
74
75
76
77
78
79
    // switch on stream
    if req.stream {
        Ok(generate_stream(infer, Json(req.into()))
            .await
            .into_response())
    } else {
        let (headers, generation) = generate(infer, Json(req.into())).await?;
        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(vec![generation.0])).into_response())
    }
}

80
81
82
83
84
85
86
87
/// Text Generation Inference endpoint info
#[utoipa::path(
    get,
    tag = "Text Generation Inference",
    path = "/info",
    responses((status = 200, description = "Served model info", body = Info))
)]
#[instrument]
88
89
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
90
91
}

92
93
94
95
96
97
98
99
100
101
102
#[utoipa::path(
    get,
    tag = "Text Generation Inference",
    path = "/health",
    responses(
        (status = 200, description = "Everything is working fine"),
        (status = 503, description = "Text generation inference is down", body = ErrorResponse,
            example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
    )
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
103
/// Health check method
104
105
106
107
108
109
110
111
112
113
114
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
115
116
}

117
118
/// Generate tokens
#[utoipa::path(
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    post,
    tag = "Text Generation Inference",
    path = "/generate",
    request_body = GenerateRequest,
    responses(
        (status = 200, description = "Generated Text", body = GenerateResponse),
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"})),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"})),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"})),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"})),
    )
134
)]
135
#[instrument(
136
    skip_all,
137
    fields(
138
        parameters = ?req.0.parameters,
139
140
141
142
        total_time,
        validation_time,
        queue_time,
        inference_time,
143
        time_per_token,
144
        seed,
145
146
    )
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
147
async fn generate(
148
    infer: Extension<Infer>,
Olivier Dehaene's avatar
Olivier Dehaene committed
149
    req: Json<GenerateRequest>,
150
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
151
    let span = tracing::Span::current();
152
    let start_time = Instant::now();
153
    metrics::increment_counter!("tgi_request_count");
154

155
156
    tracing::debug!("Input: {}", req.0.inputs);

157
    let compute_characters = req.0.inputs.chars().count();
158
159
160
161
162
    let mut add_prompt = None;
    if req.0.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.0.inputs.clone());
    }

163
    let details = req.0.parameters.details || req.0.parameters.decoder_input_details;
164
165

    // Inference
166
167
168
169
170
171
172
    let (response, best_of_responses) = match req.0.parameters.best_of {
        Some(best_of) if best_of > 1 => {
            let (response, best_of_responses) = infer.generate_best_of(req.0, best_of).await?;
            (response, Some(best_of_responses))
        }
        _ => (infer.generate(req.0).await?, None),
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
173

OlivierDehaene's avatar
OlivierDehaene committed
174
175
    // Token details
    let details = match details {
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
211
212
213
        false => None,
    };

214
215
216
217
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
218
219
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
220

221
222
223
224
225
226
227
228
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

229
230
    // Headers
    let mut headers = HeaderMap::new();
231
232
233
234
235
236
237
238
239
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
240
241
242
243
244
245
246
247
248
249
250
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
251
    );
252
253
254
255
256
257
258
259
260
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );

261
262
    // Metrics
    metrics::increment_counter!("tgi_request_success");
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
277
278
279
280
281
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
282
    // Send response
283
284
285
286
287
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

288
289
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
290

291
    let response = GenerateResponse {
292
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
293
        details,
294
    };
295
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
296
297
}

Yannic Kilcher's avatar
Yannic Kilcher committed
298
/// Generate a stream of token using Server-Sent Events
299
#[utoipa::path(
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    post,
    tag = "Text Generation Inference",
    path = "/generate_stream",
    request_body = GenerateRequest,
    responses(
        (status = 200, description = "Generated Text", body = StreamResponse,
            content_type = "text/event-stream"),
        (status = 424, description = "Generation Error", body = ErrorResponse,
            example = json ! ({"error": "Request failed during generation"}),
            content_type = "text/event-stream"),
        (status = 429, description = "Model is overloaded", body = ErrorResponse,
            example = json ! ({"error": "Model is overloaded"}),
            content_type = "text/event-stream"),
        (status = 422, description = "Input validation error", body = ErrorResponse,
            example = json ! ({"error": "Input validation error"}),
            content_type = "text/event-stream"),
        (status = 500, description = "Incomplete generation", body = ErrorResponse,
            example = json ! ({"error": "Incomplete generation"}),
            content_type = "text/event-stream"),
    )
320
)]
321
#[instrument(
322
    skip_all,
323
    fields(
324
        parameters = ?req.0.parameters,
325
326
327
328
        total_time,
        validation_time,
        queue_time,
        inference_time,
329
330
        time_per_token,
        seed,
331
332
333
334
335
    )
)]
async fn generate_stream(
    infer: Extension<Infer>,
    req: Json<GenerateRequest>,
336
337
338
339
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
340
341
    let span = tracing::Span::current();
    let start_time = Instant::now();
342
    metrics::increment_counter!("tgi_request_count");
343

344
345
    tracing::debug!("Input: {}", req.0.inputs);

346
347
348
349
350
351
352
353
354
    let compute_characters = req.0.inputs.chars().count();

    let mut headers = HeaderMap::new();
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );

355
356
357
358
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
359
360
361
362
363

        let mut add_prompt = None;
        if req.0.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.0.inputs.clone());
        }
364
365
        let details = req.0.parameters.details;

366
        let best_of = req.0.parameters.best_of.unwrap_or(1);
367
368
369
370
371
372
373
374
375
376
377
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else if req.0.parameters.decoder_input_details {
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
378
            match infer.generate_stream(req.0).instrument(info_span!(parent: &span, "async_stream")).await {
379
380
                // Keep permit as long as generate_stream lives
                Ok((_permit, mut response_stream)) => {
381
382
383
384
385
386
387
388
389
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
                                    InferStreamResponse::Token(token) => {
390
391
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

392
393
394
395
396
397
398
399
                                        // StreamResponse
                                        let stream_token = StreamResponse {
                                            token,
                                            generated_text: None,
                                            details: None,
                                        };

                                        yield Ok(Event::default().json_data(stream_token).unwrap())
400
                                    }
401
402
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
403
                                        token,
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
                                        generated_text,
                                        start,
                                        queued,
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
435
436
437
438
439
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
440
441
442
443
444
445
446
447
448
449
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

450
451
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
452

453
454
455
456
457
458
459
460
461
                                        let stream_token = StreamResponse {
                                            token,
                                            generated_text: Some(output_text),
                                            details
                                        };

                                        yield Ok(Event::default().json_data(stream_token).unwrap());
                                        break;
                                    }
462
463
                                }
                            }
464
465
466
467
468
469
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
470
471
                        }
                    }
472
473
474
475
476
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
477
                }
478
479
480
481
482
483
484
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
485
                yield Ok(Event::from(err));
486
487
488
489
            }
        }
    };

490
    (headers, Sse::new(stream).keep_alive(KeepAlive::default()))
491
492
}

493
494
/// Prometheus metrics scrape endpoint
#[utoipa::path(
495
496
497
498
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
499
500
501
502
503
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
504
505
506
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
507
508
    model_info: HubModelInfo,
    shard_info: ShardInfo,
509
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
510
    max_concurrent_requests: usize,
511
    max_best_of: usize,
512
    max_stop_sequences: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
513
    max_input_length: usize,
514
    max_total_tokens: usize,
515
516
    waiting_served_ratio: f32,
    max_batch_total_tokens: u32,
517
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
518
    client: ShardedClient,
519
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
520
521
    validation_workers: usize,
    addr: SocketAddr,
522
    allow_origin: Option<AllowOrigin>,
523
524
525
526
527
    ngrok: bool,
    ngrok_authtoken: Option<String>,
    ngrok_domain: Option<String>,
    ngrok_username: Option<String>,
    ngrok_password: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
528
) {
529
530
531
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        paths(
            get_model_info,
            compat_generate,
            generate,
            generate_stream,
            metrics,
        ),
        components(
            schemas(
                Info,
                CompatGenerateRequest,
                GenerateRequest,
                GenerateParameters,
                PrefillToken,
                Token,
                GenerateResponse,
                BestOfSequence,
                Details,
                FinishReason,
                StreamResponse,
                StreamDetails,
                ErrorResponse,
            )
        ),
        tags(
            (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
        ),
        info(
            title = "Text Generation Inference",
            license(
                name = "Apache 2.0",
                url = "https://www.apache.org/licenses/LICENSE-2.0"
            )
        )
566
567
568
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
569
    // Create state
570
571
572
    let validation = Validation::new(
        validation_workers,
        tokenizer,
573
        max_best_of,
574
575
576
577
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
    );
578
579
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
580
581
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
582
        validation,
583
584
        waiting_served_ratio,
        max_batch_total_tokens,
585
586
        max_waiting_tokens,
        max_concurrent_requests,
587
        shard_info.requires_padding,
588
        generation_health,
589
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
619
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
620

621
    // Prometheus handler
622
623
624
625
626
627
628
629
630
631
632
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
633
634
635
636
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

637
638
639
640
641
642
643
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
662
        docker_label: option_env!("DOCKER_LABEL"),
663
664
    };

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
665
    // Create router
Olivier Dehaene's avatar
Olivier Dehaene committed
666
    let app = Router::new()
667
        .merge(SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi()))
668
        // Base routes
669
        .route("/", post(compat_generate))
670
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
671
        .route("/generate", post(generate))
672
        .route("/generate_stream", post(generate_stream))
673
674
675
        // AWS Sagemaker route
        .route("/invocations", post(compat_generate))
        // Base Health route
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
676
        .route("/health", get(health))
677
678
679
680
681
        // Inference API health route
        .route("/", get(health))
        // AWS Sagemaker health route
        .route("/ping", get(health))
        // Prometheus metrics route
682
        .route("/metrics", get(metrics))
683
        .layer(Extension(info))
684
        .layer(Extension(health_ext))
685
686
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
687
        .layer(Extension(prom_handle))
688
689
        .layer(opentelemetry_tracing_layer())
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
690

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;
            use ngrok::tunnel::UrlTunnel;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

            let mut tunnel = ngrok::Session::builder()
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
                .http_endpoint();

            if let Some(domain) = ngrok_domain {
                tunnel = tunnel.domain(domain);
            }

            if let (Some(username), Some(password)) = (ngrok_username, ngrok_password) {
                tunnel = tunnel.basic_auth(username, password);
            }

            let listener = tunnel.listen().await.unwrap();

            // Run server
            tracing::info!("Ingress URL: {:?}", listener.url());
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
                .await
                .unwrap();
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
            .await
            .unwrap();
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
746
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
773
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
774
}
775

776
777
778
779
780
781
782
783
784
785
786
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
        let finish_reason = text_generation_client::FinishReason::from_i32(finish_reason).unwrap();
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

787
788
789
790
791
792
793
794
795
796
797
798
799
800
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
801
                error_type: err.error_type().to_string(),
802
803
804
805
806
807
808
809
810
811
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
812
                error_type: err.error_type().to_string(),
813
814
815
816
            })
            .unwrap()
    }
}