server.rs 64.9 KB
Newer Older
1
use crate::config::Config;
2
/// HTTP Server logic
3
use crate::health::Health;
4
use crate::infer::{InferError, InferResponse, InferStreamResponse, ToolGrammar};
5
use crate::validation::ValidationError;
6
use crate::{
7
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
drbh's avatar
drbh committed
8
9
10
    GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Infer,
    Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token,
    TokenizeResponse, Usage, Validation,
11
12
13
14
15
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
OlivierDehaene's avatar
OlivierDehaene committed
16
    CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
17
};
18
use crate::{FunctionDefinition, ToolCall, ToolType};
19
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
20
use axum::extract::Extension;
21
use axum::http::{HeaderMap, Method, StatusCode};
22
use axum::response::sse::{Event, KeepAlive, Sse};
23
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
24
use axum::routing::{get, post};
25
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
26
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
27
use futures::stream::StreamExt;
28
use futures::stream::{FuturesOrdered, FuturesUnordered};
29
use futures::Stream;
drbh's avatar
drbh committed
30
use futures::TryStreamExt;
31
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
32
use serde_json::Value;
33
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
34
use std::net::SocketAddr;
35
36
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
37
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
38
use tokenizers::Tokenizer;
39
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
40
use tokio::signal;
41
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
42
use tokio::time::Instant;
43
use tower_http::cors::{AllowOrigin, CorsLayer};
44
use tracing::{info_span, instrument, Instrument};
45
46
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
47

48
49
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
69
)]
70
#[instrument(skip(infer, req))]
71
async fn compat_generate(
72
    Extension(default_return_full_text): Extension<bool>,
73
    infer: Extension<Infer>,
74
    compute_type: Extension<ComputeType>,
75
    Json(mut req): Json<CompatGenerateRequest>,
76
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
77
78
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
79
        req.parameters.return_full_text = Some(default_return_full_text)
80
81
    }

82
83
    // switch on stream
    if req.stream {
84
        Ok(generate_stream(infer, compute_type, Json(req.into()))
85
86
87
            .await
            .into_response())
    } else {
88
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
89
        // wrap generation inside a Vec to match api-inference
90
        Ok((headers, Json(vec![generation])).into_response())
91
92
93
    }
}

94
95
/// Text Generation Inference endpoint info
#[utoipa::path(
96
97
98
99
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
100
101
)]
#[instrument]
102
103
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
104
105
}

106
#[utoipa::path(
107
108
109
110
111
112
113
114
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
115
116
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
117
/// Health check method
118
119
120
121
122
123
124
125
126
127
128
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
129
130
}

131
132
/// Generate tokens
#[utoipa::path(
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
148
)]
149
#[instrument(
150
151
skip_all,
fields(
152
parameters = ? req.parameters,
153
154
155
156
157
158
159
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
160
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
161
async fn generate(
162
    infer: Extension<Infer>,
163
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
164
    Json(req): Json<GenerateRequest>,
165
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
166
    let span = tracing::Span::current();
167
168
169
170
171
172
173
174
175
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

async fn generate_internal(
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
176
    let start_time = Instant::now();
177
    metrics::increment_counter!("tgi_request_count");
178

179
180
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
181

182
    let compute_characters = req.inputs.chars().count();
183
    let mut add_prompt = None;
184
185
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
186
187
    }

Nicolas Patry's avatar
Nicolas Patry committed
188
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
189
190

    // Inference
191
    let (response, best_of_responses) = match req.parameters.best_of {
192
        Some(best_of) if best_of > 1 => {
193
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
194
195
            (response, Some(best_of_responses))
        }
196
        _ => (infer.generate(req).await?, None),
197
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
198

OlivierDehaene's avatar
OlivierDehaene committed
199
    // Token details
200
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
201
    let details = match details {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
222
                            top_tokens: response.top_tokens,
223
224
225
226
227
228
229
230
231
232
233
234
235
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
236
                top_tokens: response.top_tokens,
237
238
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
239
240
241
        false => None,
    };

242
243
244
245
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
246
247
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
248

249
250
251
252
253
254
255
256
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

257
258
    // Headers
    let mut headers = HeaderMap::new();
259
    headers.insert("x-compute-type", compute_type.parse().unwrap());
260
261
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
262
        total_time.as_secs_f64().to_string().parse().unwrap(),
263
264
265
266
267
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
268
269
270
271
272
273
274
275
276
277
278
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
279
    );
280
281
282
283
284
285
286
287
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
288
289
290
291
292
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
293

294
295
    // Metrics
    metrics::increment_counter!("tgi_request_success");
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
310
311
312
313
314
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
315
    // Send response
316
317
318
319
320
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

321
322
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
323

324
    let response = GenerateResponse {
325
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
326
        details,
327
    };
328
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
329
330
}

Yannic Kilcher's avatar
Yannic Kilcher committed
331
/// Generate a stream of token using Server-Sent Events
332
#[utoipa::path(
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
353
)]
354
#[instrument(
355
356
skip_all,
fields(
357
parameters = ? req.parameters,
358
359
360
361
362
363
364
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
365
366
)]
async fn generate_stream(
367
    Extension(infer): Extension<Infer>,
368
    Extension(compute_type): Extension<ComputeType>,
369
    Json(req): Json<GenerateRequest>,
370
371
372
373
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
374
    let span = tracing::Span::current();
375
376
377
378
379
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
380
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
381
382
383
384
385
386
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
387
    ComputeType(compute_type): ComputeType,
388
389
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
390
    span: tracing::Span,
391
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
392
    let start_time = Instant::now();
393
    metrics::increment_counter!("tgi_request_count");
394

395
    tracing::debug!("Input: {}", req.inputs);
396

397
    let compute_characters = req.inputs.chars().count();
398
399

    let mut headers = HeaderMap::new();
400
    headers.insert("x-compute-type", compute_type.parse().unwrap());
401
402
403
404
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
405
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
406

407
408
409
410
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
411
412

        let mut add_prompt = None;
413
414
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
415
        }
416
        let details = req.parameters.details;
417

418
        let best_of = req.parameters.best_of.unwrap_or(1);
419
420
421
422
423
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
424
        } else if req.parameters.decoder_input_details {
425
426
427
428
429
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
430
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
431
                // Keep permit as long as generate_stream lives
432
                Ok((_permit, _input_length, mut response_stream)) => {
433
                    let mut index = 0;
434
435
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
436
                        index += 1;
437
438
439
440
441
442
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
443
444
445
446
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
447
448
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

449
450
                                        // StreamResponse
                                        let stream_token = StreamResponse {
451
                                            index,
452
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
453
                                            top_tokens,
454
455
456
                                            generated_text: None,
                                            details: None,
                                        };
457
458
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
459
                                    }
460
461
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
462
                                        token,
463
464
465
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
466
                                        top_tokens,
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
495
496
497
498
499
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
500
501
502
503
504
505
506
507
508
509
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

510
511
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
512

513
                                        let stream_token = StreamResponse {
514
                                            index,
515
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
516
                                            top_tokens,
517
518
519
520
                                            generated_text: Some(output_text),
                                            details
                                        };

521
522
523

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
524
525
                                        break;
                                    }
526
527
                                }
                            }
528
529
530
531
532
533
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
534
535
                        }
                    }
536
537
538
539
540
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
541
                }
542
543
544
545
546
547
548
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
549
                yield Ok(Event::from(err));
550
551
552
553
            }
        }
    };

554
555
556
    (headers, stream)
}

557
558
559
560
561
562
563
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/completions",
    request_body = CompletionRequest,
    responses(
564
565
566
567
568
    (status = 200, description = "Generated Chat Completion",
    content(
    ("application/json" = Completion),
    ("text/event-stream" = CompletionCompleteChunk),
    )),
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
597
    let span = tracing::Span::current();
598
599
    metrics::increment_counter!("tgi_request_count");

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    let CompletionRequest {
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
616
617
618
619
620
621
622
623
624
625
626
627
628
629

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
    if req.prompt.len() > info.max_client_batch_size {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
651
                temperature,
652
653
654
655
656
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
657
                do_sample,
658
659
                max_new_tokens,
                return_full_text: None,
660
                stop: stop.clone(),
661
662
663
664
665
666
667
668
669
670
671
672
673
674
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
675
676

    if stream {
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
                        .json_data(CompletionCompleteChunk {
                            id: "".to_string(),
                            object: "text_completion".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
                        })
712
                        .unwrap_or_else(|_e| Event::default())
713
714
715
716
717
718
719
720
721
722
723
724
725
726
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
727

728
729
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
730

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
760
                )
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
779

780
781
782
783
784
785
786
787
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
788

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
814
815
816
817
818
819
820
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
923
924
925
926
927
928
929
930
931
932
933

        let response = Completion {
            id: "".to_string(),
            object: "text_completion".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
934
            choices,
935
            usage: Usage {
936
937
938
                prompt_tokens,
                completion_tokens,
                total_tokens,
939
940
941
            },
        };

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
958
959
960
961
        Ok((headers, Json(response)).into_response())
    }
}

962
963
964
965
966
967
968
/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
969
970
971
972
973
    (status = 200, description = "Generated Chat Completion",
    content(
    ("application/json" = ChatCompletion),
    ("text/event-stream" = ChatCompletionChunk),
    )),
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
998
    Extension(compute_type): Extension<ComputeType>,
999
1000
1001
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1002
    let span = tracing::Span::current();
1003
    metrics::increment_counter!("tgi_request_count");
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    let ChatRequest {
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1015
        temperature,
1016
1017
1018
1019
1020
1021
1022
1023
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1024
1025
1026
1027
1028
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1029
1030
1031
1032

    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

1046
1047
1048
    let grammar_with_prompt = tool_grammar
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1049

1050
1051
1052
    let typed_grammar = grammar_with_prompt
        .as_ref()
        .map(|(grammar, _)| grammar.clone());
drbh's avatar
drbh committed
1053

1054
1055
1056
1057
1058
1059
1060
    // apply chat template to flatten the request into a single input
    let inputs = match infer.apply_chat_template(messages, grammar_with_prompt) {
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1061
1062
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1063
1064
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1065
                }),
1066
1067
            ));
        }
drbh's avatar
drbh committed
1068
1069
    };

1070
1071
1072
1073
1074
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1075
            temperature,
1076
            repetition_penalty,
1077
            frequency_penalty: req.frequency_penalty,
1078
            top_k: None,
1079
            top_p: req.top_p,
1080
            typical_p: None,
1081
            do_sample,
1082
1083
            max_new_tokens,
            return_full_text: None,
1084
            stop,
1085
1086
1087
            truncate: None,
            watermark: false,
            details: true,
1088
            decoder_input_details: !stream,
1089
            seed,
1090
            top_n_tokens: req.top_logprobs,
1091
            grammar: typed_grammar,
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1110
1111
1112
1113
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1114
1115
1116
1117
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1118
1119
1120
1121
1122
1123
1124
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1125
1126
            };

1127
1128
1129
1130
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
1131
1132
                    content,
                    tool_calls,
1133
                    current_time,
1134
                    logprobs,
1135
1136
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
1137
1138
1139
1140
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1141
1142
        };

1143
1144
1145
1146
1147
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1148
            span,
1149
1150
        )
        .await;
1151
1152
1153
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1154
1155
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1156
1157
1158
1159
1160
1161

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;
1174
            let tool_calls = vec![ToolCall {
1175
                id: "0".to_string(),
drbh's avatar
drbh committed
1176
1177
1178
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
                    name: gen_text_value
                        .get("function")
                        .and_then(|f| f.get("_name"))
                        .and_then(|name| name.as_str())
                        .unwrap_or("default_function_name")
                        .to_string(),
                    // Serialize the JSON object obtained from "function" to an escaped JSON string
                    arguments: gen_text_value
                        .get("function")
                        .map(|f| {
                            let mut f_cloned = f.clone();
                            if let Value::Object(ref mut props) = f_cloned {
                                props.remove("_name");
                            }
                            f_cloned
                        })
                        .unwrap_or_default(),
drbh's avatar
drbh committed
1196
                },
1197
1198
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1199
1200
1201
        } else {
            (None, Some(generation.generated_text))
        };
1202
1203
1204
1205
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1206
            output,
1207
1208
1209
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1210
            tool_calls,
1211
1212
1213
1214
1215
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1216
1217
}

drbh's avatar
drbh committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1252
    let span = tracing::Span::current();
drbh's avatar
drbh committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1284
                generate_internal(
drbh's avatar
drbh committed
1285
                    Extension(infer.clone()),
1286
                    compute_type.clone(),
drbh's avatar
drbh committed
1287
                    Json(generate_request),
1288
                    span.clone(),
drbh's avatar
drbh committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1311
1312
1313
1314
1315
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
1316
    request_body = GenerateRequest,
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1327
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1345
        Ok(Json(TokenizeResponse(tokens)))
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1357
1358
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1359
1360
1361
1362
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
1363
1364
1365
1366
1367
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1368
1369
1370
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1371
1372
1373
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
1374
1375
    model_info: HubModelInfo,
    shard_info: ShardInfo,
1376
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1377
    max_concurrent_requests: usize,
1378
    max_best_of: usize,
1379
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1380
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1381
    max_input_length: usize,
1382
    max_total_tokens: usize,
1383
    waiting_served_ratio: f32,
1384
    max_batch_prefill_tokens: u32,
1385
    max_batch_total_tokens: u32,
1386
    max_waiting_tokens: usize,
1387
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1388
    client: ShardedClient,
1389
    tokenizer: Option<Tokenizer>,
1390
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1391
1392
    validation_workers: usize,
    addr: SocketAddr,
1393
    allow_origin: Option<AllowOrigin>,
1394
1395
    ngrok: bool,
    ngrok_authtoken: Option<String>,
1396
    ngrok_edge: Option<String>,
1397
    tokenizer_config: HubTokenizerConfig,
drbh's avatar
drbh committed
1398
    processor_config: HubProcessorConfig,
1399
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1400
    grammar_support: bool,
1401
    max_client_batch_size: usize,
1402
) -> Result<(), axum::BoxError> {
1403
1404
1405
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1406
1407
1408
1409
1410
1411
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1412
    chat_completions,
1413
    completions,
1414
    tokenize,
1415
1416
1417
1418
1419
1420
1421
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1422
    GrammarType,
1423
1424
    ChatRequest,
    Message,
1425
    ChatCompletionComplete,
1426
1427
1428
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1429
1430
1431
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1432
    ChatCompletion,
1433
1434
1435
    CompletionRequest,
    CompletionComplete,
    CompletionCompleteChunk,
1436
1437
1438
1439
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1440
1441
    TokenizeResponse,
    SimpleToken,
1442
1443
1444
1445
1446
1447
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1448
    GrammarType,
1449
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1450
1451
1452
1453
1454
1455
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1468
1469
1470
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1471
    // Create state
1472
1473
1474
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1475
        config,
1476
        max_best_of,
1477
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1478
        max_top_n_tokens,
1479
1480
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
1481
        grammar_support,
1482
    );
1483
1484
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
1485
1486
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1487
        validation,
1488
        waiting_served_ratio,
1489
        max_batch_prefill_tokens,
1490
        max_batch_total_tokens,
1491
        max_waiting_tokens,
1492
        max_batch_size,
1493
        max_concurrent_requests,
1494
        shard_info.requires_padding,
1495
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1496
        shard_info.speculate,
1497
        generation_health,
1498
        tokenizer_config,
drbh's avatar
drbh committed
1499
        processor_config,
1500
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1501

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1530
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1531
1532
1533
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1534

1535
    // Prometheus handler
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1546
1547
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1548
        .unwrap();
1549
1550
1551
1552
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1553
1554
1555
1556
1557
1558
1559
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1575
        max_batch_size,
1576
        validation_workers,
1577
        max_client_batch_size,
1578
        router: env!("CARGO_PKG_NAME"),
1579
1580
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1581
        docker_label: option_env!("DOCKER_LABEL"),
1582
1583
    };

drbh's avatar
drbh committed
1584
1585
1586
1587
1588
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1589
1590
1591
1592
1593
1594
1595
1596
1597
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1598
            // limiting mutability to the smallest scope necessary
1599
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1600
1601
1602
1603
1604
1605
1606
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1607
    // Configure Swagger UI
drbh's avatar
drbh committed
1608
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1609
1610
1611

    // Define base and health routes
    let base_routes = Router::new()
1612
        .route("/", post(compat_generate))
1613
        .route("/", get(health))
1614
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1615
        .route("/generate", post(generate))
1616
        .route("/generate_stream", post(generate_stream))
1617
        .route("/v1/chat/completions", post(chat_completions))
1618
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1619
        .route("/vertex", post(vertex_compatibility))
1620
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1621
        .route("/health", get(health))
1622
        .route("/ping", get(health))
1623
1624
1625
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1626
    let aws_sagemaker_route = if messages_api_enabled {
1627
1628
1629
1630
1631
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1632
1633
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1634

1635
    // Combine routes and layers
drbh's avatar
drbh committed
1636
    let mut app = Router::new()
1637
1638
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1657
        .layer(Extension(info))
1658
        .layer(Extension(health_ext.clone()))
1659
1660
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1661
        .layer(Extension(compute_type))
1662
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1663
        .layer(OtelAxumLayer::default())
1664
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1665

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1676
1677
1678
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1679
1680
1681
1682
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1683
1684
                .labeled_tunnel()
                .label("edge", edge);
1685
1686

            let listener = tunnel.listen().await.unwrap();
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1702
1703
1704
1705
1706
1707

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1708
                .await?;
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1725
            .await?;
1726
    }
1727
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1728
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1755
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1756
}
1757

1758
1759
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1760
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1761
1762
1763
1764
1765
1766
1767
1768
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1769
1770
1771
1772
1773
1774
1775
1776
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1777
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1778
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1779
1780
1781
1782
1783
1784
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1785
                error_type: err.error_type().to_string(),
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1796
                error_type: err.error_type().to_string(),
1797
1798
1799
1800
            })
            .unwrap()
    }
}