server.rs 44.7 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
7
8
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk,
    ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs,
    ChatCompletionTopLogprob, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
drbh's avatar
drbh committed
9
    FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
10
    HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails,
11
    StreamResponse, Token, TokenizeResponse, Usage, Validation, VertexRequest, VertexResponse,
12
};
Olivier Dehaene's avatar
Olivier Dehaene committed
13
use axum::extract::Extension;
14
use axum::http::{HeaderMap, Method, StatusCode};
15
use axum::response::sse::{Event, KeepAlive, Sse};
16
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
17
use axum::routing::{get, post};
18
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
19
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
drbh's avatar
drbh committed
20
use futures::stream::FuturesUnordered;
21
use futures::stream::StreamExt;
22
use futures::Stream;
drbh's avatar
drbh committed
23
use futures::TryStreamExt;
24
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
25
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
26
use std::net::SocketAddr;
27
28
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
29
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
30
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
31
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
32
use tokio::time::Instant;
33
use tower_http::cors::{AllowOrigin, CorsLayer};
34
use tracing::{info_span, instrument, Instrument};
35
36
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
37

38
39
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
59
)]
60
#[instrument(skip(infer, req))]
61
async fn compat_generate(
62
    Extension(default_return_full_text): Extension<bool>,
63
    infer: Extension<Infer>,
64
    compute_type: Extension<ComputeType>,
65
    Json(mut req): Json<CompatGenerateRequest>,
66
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
67
68
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
69
        req.parameters.return_full_text = Some(default_return_full_text)
70
71
    }

72
73
    // switch on stream
    if req.stream {
74
        Ok(generate_stream(infer, compute_type, Json(req.into()))
75
76
77
            .await
            .into_response())
    } else {
78
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
79
        // wrap generation inside a Vec to match api-inference
80
        Ok((headers, Json(vec![generation])).into_response())
81
82
83
    }
}

84
85
/// Text Generation Inference endpoint info
#[utoipa::path(
86
87
88
89
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
90
91
)]
#[instrument]
92
93
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
94
95
}

96
#[utoipa::path(
97
98
99
100
101
102
103
104
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
105
106
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
107
/// Health check method
108
109
110
111
112
113
114
115
116
117
118
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
119
120
}

121
122
/// Generate tokens
#[utoipa::path(
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
138
)]
139
#[instrument(
140
141
skip_all,
fields(
142
parameters = ? req.parameters,
143
144
145
146
147
148
149
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
150
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
151
async fn generate(
152
    infer: Extension<Infer>,
153
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
154
    Json(req): Json<GenerateRequest>,
155
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
156
    let span = tracing::Span::current();
157
    let start_time = Instant::now();
158
    metrics::increment_counter!("tgi_request_count");
159

160
    tracing::debug!("Input: {}", req.inputs);
161

162
    let compute_characters = req.inputs.chars().count();
163
    let mut add_prompt = None;
164
165
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
166
167
    }

Nicolas Patry's avatar
Nicolas Patry committed
168
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
169
170

    // Inference
171
    let (response, best_of_responses) = match req.parameters.best_of {
172
        Some(best_of) if best_of > 1 => {
173
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
174
175
            (response, Some(best_of_responses))
        }
176
        _ => (infer.generate(req).await?, None),
177
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
178

OlivierDehaene's avatar
OlivierDehaene committed
179
    // Token details
180
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
181
    let details = match details {
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
202
                            top_tokens: response.top_tokens,
203
204
205
206
207
208
209
210
211
212
213
214
215
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
216
                top_tokens: response.top_tokens,
217
218
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
219
220
221
        false => None,
    };

222
223
224
225
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
226
227
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
228

229
230
231
232
233
234
235
236
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

237
238
    // Headers
    let mut headers = HeaderMap::new();
239
    headers.insert("x-compute-type", compute_type.parse().unwrap());
240
241
242
243
244
245
246
247
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
248
249
250
251
252
253
254
255
256
257
258
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
259
    );
260
261
262
263
264
265
266
267
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
268
269
270
271
272
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
273

274
275
    // Metrics
    metrics::increment_counter!("tgi_request_success");
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
290
291
292
293
294
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
295
    // Send response
296
297
298
299
300
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

301
302
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
303

304
    let response = GenerateResponse {
305
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
306
        details,
307
    };
308
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
309
310
}

Yannic Kilcher's avatar
Yannic Kilcher committed
311
/// Generate a stream of token using Server-Sent Events
312
#[utoipa::path(
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
333
)]
334
#[instrument(
335
336
skip_all,
fields(
337
parameters = ? req.parameters,
338
339
340
341
342
343
344
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
345
346
)]
async fn generate_stream(
347
    Extension(infer): Extension<Infer>,
348
    Extension(compute_type): Extension<ComputeType>,
349
    Json(req): Json<GenerateRequest>,
350
351
352
353
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
354
355
356
357
358
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
359
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
360
361
362
363
364
365
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
366
    ComputeType(compute_type): ComputeType,
367
368
369
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
370
371
    let span = tracing::Span::current();
    let start_time = Instant::now();
372
    metrics::increment_counter!("tgi_request_count");
373

374
    tracing::debug!("Input: {}", req.inputs);
375

376
    let compute_characters = req.inputs.chars().count();
377
378

    let mut headers = HeaderMap::new();
379
    headers.insert("x-compute-type", compute_type.parse().unwrap());
380
381
382
383
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
384
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
385

386
387
388
389
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
390
391

        let mut add_prompt = None;
392
393
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
394
        }
395
        let details = req.parameters.details;
396

397
        let best_of = req.parameters.best_of.unwrap_or(1);
398
399
400
401
402
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
403
        } else if req.parameters.decoder_input_details {
404
405
406
407
408
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
409
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
410
                // Keep permit as long as generate_stream lives
411
                Ok((_permit, _input_length, mut response_stream)) => {
412
                    let mut index = 0;
413
414
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
415
                        index += 1;
416
417
418
419
420
421
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
422
423
424
425
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
426
427
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

428
429
                                        // StreamResponse
                                        let stream_token = StreamResponse {
430
                                            index,
431
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
432
                                            top_tokens,
433
434
435
                                            generated_text: None,
                                            details: None,
                                        };
436
437
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
438
                                    }
439
440
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
441
                                        token,
442
443
444
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
445
                                        top_tokens,
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
474
475
476
477
478
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
479
480
481
482
483
484
485
486
487
488
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

489
490
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
491

492
                                        let stream_token = StreamResponse {
493
                                            index,
494
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
495
                                            top_tokens,
496
497
498
499
                                            generated_text: Some(output_text),
                                            details
                                        };

500
501
502

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
503
504
                                        break;
                                    }
505
506
                                }
                            }
507
508
509
510
511
512
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
513
514
                        }
                    }
515
516
517
518
519
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
520
                }
521
522
523
524
525
526
527
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
528
                yield Ok(Event::from(err));
529
530
531
532
            }
        }
    };

533
534
535
536
537
538
539
540
541
542
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
543
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
568
    Extension(compute_type): Extension<ComputeType>,
569
570
571
572
573
574
575
576
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
577
578
        .presence_penalty
        // rescale repetition_penalty from (-2.0, 2.0) to (0.0, 4.0)
579
580
581
582
583
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
584
    let inputs = match infer.apply_chat_template(req.messages) {
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
604
            temperature: req.temperature,
605
            repetition_penalty,
606
            frequency_penalty: req.frequency_penalty,
607
            top_k: None,
608
            top_p: req.top_p,
609
610
611
612
613
614
615
616
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
617
            decoder_input_details: !stream,
618
619
            seed,
            top_n_tokens: None,
drbh's avatar
drbh committed
620
            grammar: None,
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

639
640
641
642
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

643
644
645
646
647
648
649
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
                    stream_token.token.text,
                    current_time,
                    stream_token.index,
650
                    logprobs,
651
652
653
654
655
656
657
658
659
660
661
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

662
663
664
665
666
667
668
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;
669
670
671
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
672
673
674
675
676
677
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;
678
679
680
681
682
683
684
685
686
687

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
688
            generation.generated_text,
689
690
691
692
693
694
695
696
            current_time,
            generation.details.unwrap(),
            logprobs,
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
697
698
}

drbh's avatar
drbh committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
                generate(
                    Extension(infer.clone()),
                    Extension(compute_type.clone()),
                    Json(generate_request),
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

790
791
792
793
794
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
795
    request_body = GenerateRequest,
796
797
798
799
800
801
802
803
804
805
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
806
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
824
        Ok(Json(TokenizeResponse(tokens)))
825
826
827
828
829
830
831
832
833
834
835
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

836
837
/// Prometheus metrics scrape endpoint
#[utoipa::path(
838
839
840
841
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
842
843
844
845
846
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

847
848
849
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
850
851
852
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
853
854
    model_info: HubModelInfo,
    shard_info: ShardInfo,
855
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
856
    max_concurrent_requests: usize,
857
    max_best_of: usize,
858
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
859
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
860
    max_input_length: usize,
861
    max_total_tokens: usize,
862
    waiting_served_ratio: f32,
863
    max_batch_prefill_tokens: u32,
864
    max_batch_total_tokens: u32,
865
    max_waiting_tokens: usize,
866
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
867
    client: ShardedClient,
868
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
869
870
    validation_workers: usize,
    addr: SocketAddr,
871
    allow_origin: Option<AllowOrigin>,
872
873
    ngrok: bool,
    ngrok_authtoken: Option<String>,
874
    ngrok_edge: Option<String>,
875
    tokenizer_config: HubTokenizerConfig,
876
    messages_api_enabled: bool,
drbh's avatar
drbh committed
877
    grammar_support: bool,
878
) -> Result<(), axum::BoxError> {
879
880
881
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
882
883
884
885
886
887
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
888
889
    chat_completions,
    tokenize,
890
891
892
893
894
895
896
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
897
    GrammarType,
898
899
    ChatRequest,
    Message,
900
    ChatCompletionComplete,
901
902
903
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
904
905
906
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
907
    ChatCompletion,
908
909
910
911
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
912
913
    TokenizeResponse,
    SimpleToken,
914
915
916
917
918
919
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
920
    GrammarType,
921
    Usage,
922
923
924
925
926
927
928
929
930
931
932
933
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
934
935
936
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
937
    // Create state
938
939
940
    let validation = Validation::new(
        validation_workers,
        tokenizer,
941
        max_best_of,
942
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
943
        max_top_n_tokens,
944
945
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
946
        grammar_support,
947
    );
948
949
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
950
951
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
952
        validation,
953
        waiting_served_ratio,
954
        max_batch_prefill_tokens,
955
        max_batch_total_tokens,
956
        max_waiting_tokens,
957
        max_batch_size,
958
        max_concurrent_requests,
959
        shard_info.requires_padding,
960
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
961
        shard_info.speculate,
962
        generation_health,
963
        tokenizer_config,
964
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
994
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
995
996
997
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
998

999
    // Prometheus handler
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1010
1011
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1012
        .unwrap();
1013
1014
1015
1016
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1017
1018
1019
1020
1021
1022
1023
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1039
        max_batch_size,
1040
1041
1042
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1043
        docker_label: option_env!("DOCKER_LABEL"),
1044
1045
    };

drbh's avatar
drbh committed
1046
1047
1048
1049
1050
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1051
1052
1053
1054
1055
1056
1057
1058
1059
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1060
            // limiting mutability to the smallest scope necessary
1061
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1062
1063
1064
1065
1066
1067
1068
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1069
    // Configure Swagger UI
drbh's avatar
drbh committed
1070
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1071
1072
1073

    // Define base and health routes
    let base_routes = Router::new()
1074
        .route("/", post(compat_generate))
1075
        .route("/", get(health))
1076
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1077
        .route("/generate", post(generate))
1078
        .route("/generate_stream", post(generate_stream))
1079
        .route("/v1/chat/completions", post(chat_completions))
drbh's avatar
drbh committed
1080
        .route("/vertex", post(vertex_compatibility))
1081
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1082
        .route("/health", get(health))
1083
        .route("/ping", get(health))
1084
1085
1086
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1087
    let aws_sagemaker_route = if messages_api_enabled {
1088
1089
1090
1091
1092
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1093
1094
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1095

1096
    // Combine routes and layers
drbh's avatar
drbh committed
1097
    let mut app = Router::new()
1098
1099
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1118
        .layer(Extension(info))
1119
        .layer(Extension(health_ext.clone()))
1120
1121
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1122
        .layer(Extension(compute_type))
1123
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1124
        .layer(OtelAxumLayer::default())
1125
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1137
1138
1139
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1140
1141
1142
1143
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1144
1145
                .labeled_tunnel()
                .label("edge", edge);
1146
1147

            let listener = tunnel.listen().await.unwrap();
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1163
1164
1165
1166
1167
1168

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1169
                .await?;
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1186
            .await?;
1187
    }
1188
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1189
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1216
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1217
}
1218

1219
1220
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1221
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1222
1223
1224
1225
1226
1227
1228
1229
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1230
1231
1232
1233
1234
1235
1236
1237
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1238
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1239
1240
1241
1242
1243
1244
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1245
                error_type: err.error_type().to_string(),
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1256
                error_type: err.error_type().to_string(),
1257
1258
1259
1260
            })
            .unwrap()
    }
}