server.rs 68.7 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
3
4
5
6
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
7
use crate::validation::ValidationError;
8
use crate::{
9
    BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
OlivierDehaene's avatar
OlivierDehaene committed
10
11
12
    GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
    Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
    Usage, Validation,
13
14
15
16
17
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
OlivierDehaene's avatar
OlivierDehaene committed
18
    CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
19
};
20
use crate::{FunctionDefinition, ToolCall, ToolType};
21
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
22
use axum::extract::Extension;
23
use axum::http::{HeaderMap, Method, StatusCode};
24
use axum::response::sse::{Event, KeepAlive, Sse};
25
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
26
use axum::routing::{get, post};
27
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
28
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
29
use futures::stream::StreamExt;
30
use futures::stream::{FuturesOrdered, FuturesUnordered};
31
use futures::Stream;
drbh's avatar
drbh committed
32
use futures::TryStreamExt;
33
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
34
use serde_json::Value;
35
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
36
use std::net::SocketAddr;
37
38
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
OlivierDehaene's avatar
OlivierDehaene committed
39
40
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
41
use tokenizers::Tokenizer;
42
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
43
use tokio::signal;
44
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
45
use tokio::time::Instant;
46
use tower_http::cors::{AllowOrigin, CorsLayer};
47
use tracing::{info_span, instrument, Instrument};
48
49
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
50

51
52
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
72
)]
73
#[instrument(skip(infer, req))]
74
async fn compat_generate(
75
    Extension(default_return_full_text): Extension<bool>,
76
    infer: Extension<Infer>,
77
    compute_type: Extension<ComputeType>,
78
    Json(mut req): Json<CompatGenerateRequest>,
79
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
80
81
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
82
        req.parameters.return_full_text = Some(default_return_full_text)
83
84
    }

85
86
    // switch on stream
    if req.stream {
87
        Ok(generate_stream(infer, compute_type, Json(req.into()))
88
89
90
            .await
            .into_response())
    } else {
91
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
92
        // wrap generation inside a Vec to match api-inference
93
        Ok((headers, Json(vec![generation])).into_response())
94
95
96
    }
}

97
98
/// Text Generation Inference endpoint info
#[utoipa::path(
99
100
101
102
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
103
104
)]
#[instrument]
105
106
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
107
108
}

109
#[utoipa::path(
110
111
112
113
114
115
116
117
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
118
119
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
120
/// Health check method
OlivierDehaene's avatar
OlivierDehaene committed
121
122
123
async fn health(
    mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
124
125
126
127
128
129
130
131
132
133
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
134
135
}

136
137
/// Generate tokens
#[utoipa::path(
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
153
)]
154
#[instrument(
155
156
skip_all,
fields(
157
parameters = ? req.parameters,
158
159
160
161
162
163
164
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
165
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
166
async fn generate(
167
    infer: Extension<Infer>,
168
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
169
    Json(req): Json<GenerateRequest>,
170
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
171
    let span = tracing::Span::current();
172
173
174
175
176
177
178
179
180
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

async fn generate_internal(
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
181
    let start_time = Instant::now();
182
    metrics::increment_counter!("tgi_request_count");
183

184
185
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
186

187
    let compute_characters = req.inputs.chars().count();
188
    let mut add_prompt = None;
189
190
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
191
192
    }

Nicolas Patry's avatar
Nicolas Patry committed
193
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
194
195

    // Inference
196
    let (response, best_of_responses) = match req.parameters.best_of {
197
        Some(best_of) if best_of > 1 => {
198
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
199
200
            (response, Some(best_of_responses))
        }
201
        _ => (infer.generate(req).await?, None),
202
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
203

OlivierDehaene's avatar
OlivierDehaene committed
204
    // Token details
205
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
206
    let details = match details {
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
221
                            finish_reason: response.generated_text.finish_reason,
222
223
224
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
225
                            top_tokens: response.top_tokens,
226
227
228
229
230
231
232
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
233
                finish_reason: response.generated_text.finish_reason,
234
235
236
237
238
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
239
                top_tokens: response.top_tokens,
240
241
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
242
243
244
        false => None,
    };

245
246
247
248
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
249
250
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
251

252
253
254
255
256
257
258
259
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

260
261
    // Headers
    let mut headers = HeaderMap::new();
262
    headers.insert("x-compute-type", compute_type.parse().unwrap());
263
264
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
265
        total_time.as_secs_f64().to_string().parse().unwrap(),
266
267
268
269
270
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
271
272
273
274
275
276
277
278
279
280
281
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
282
    );
283
284
285
286
287
288
289
290
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
291
292
293
294
295
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
296

297
298
    // Metrics
    metrics::increment_counter!("tgi_request_success");
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
313
314
315
316
317
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
318
    // Send response
319
320
321
322
323
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

324
325
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
326

327
    let response = GenerateResponse {
328
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
329
        details,
330
    };
331
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
332
333
}

Yannic Kilcher's avatar
Yannic Kilcher committed
334
/// Generate a stream of token using Server-Sent Events
335
#[utoipa::path(
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
356
)]
357
#[instrument(
358
359
skip_all,
fields(
360
parameters = ? req.parameters,
361
362
363
364
365
366
367
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
368
369
)]
async fn generate_stream(
370
    Extension(infer): Extension<Infer>,
371
    Extension(compute_type): Extension<ComputeType>,
372
    Json(req): Json<GenerateRequest>,
373
374
375
376
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
377
    let span = tracing::Span::current();
378
379
380
381
382
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
383
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
384
385
386
387
388
389
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
390
    ComputeType(compute_type): ComputeType,
391
392
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
393
    span: tracing::Span,
394
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
395
    let start_time = Instant::now();
396
    metrics::increment_counter!("tgi_request_count");
397

398
    tracing::debug!("Input: {}", req.inputs);
399

400
    let compute_characters = req.inputs.chars().count();
401
402

    let mut headers = HeaderMap::new();
403
    headers.insert("x-compute-type", compute_type.parse().unwrap());
404
405
406
407
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
408
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
409

410
411
412
413
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
414
415

        let mut add_prompt = None;
416
417
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
418
        }
419
        let details = req.parameters.details;
420

421
        let best_of = req.parameters.best_of.unwrap_or(1);
422
423
424
425
426
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
427
        } else if req.parameters.decoder_input_details {
428
429
430
431
432
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
433
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
434
                // Keep permit as long as generate_stream lives
435
                Ok((_permit, _input_length, mut response_stream)) => {
436
                    let mut index = 0;
437
438
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
439
                        index += 1;
440
441
442
443
444
445
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
446
447
448
449
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
450
451
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

452
453
                                        // StreamResponse
                                        let stream_token = StreamResponse {
454
                                            index,
455
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
456
                                            top_tokens,
457
458
459
                                            generated_text: None,
                                            details: None,
                                        };
460
461
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
462
                                    }
463
464
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
465
                                        token,
466
467
468
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
469
                                        top_tokens,
470
471
472
473
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
474
                                                finish_reason: generated_text.finish_reason,
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
498
499
500
501
502
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
503
504
505
506
507
508
509
510
511
512
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

513
514
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
515

516
                                        let stream_token = StreamResponse {
517
                                            index,
518
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
519
                                            top_tokens,
520
521
522
523
                                            generated_text: Some(output_text),
                                            details
                                        };

524
525
526

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
527
528
                                        break;
                                    }
529
530
                                }
                            }
531
532
533
534
535
536
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
537
538
                        }
                    }
539
540
541
542
543
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
544
                }
545
546
547
548
549
550
551
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
552
                yield Ok(Event::from(err));
553
554
555
556
            }
        }
    };

557
558
559
    (headers, stream)
}

560
561
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = Completion),
("text/event-stream" = CompletionCompleteChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
582
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
583
584
585
586
587
588
589
590
591
592
593
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
594
595
596
597
598
599
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
600
    let span = tracing::Span::current();
601
602
    metrics::increment_counter!("tgi_request_count");

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    let CompletionRequest {
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
619
620
621
622
623
624
625
626
627
628
629
630
631
632

    // if suffix is present throw an error
    if req.suffix.is_some() {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    if req.prompt.len() > info.max_client_batch_size {
        metrics::increment_counter!("tgi_request_failure", "err" => "validation");
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
654
                temperature,
655
656
657
658
659
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
660
                do_sample,
661
662
                max_new_tokens,
                return_full_text: None,
663
                stop: stop.clone(),
664
665
666
667
668
669
670
671
672
673
674
675
676
677
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
678
679

    if stream {
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
                        .json_data(CompletionCompleteChunk {
                            id: "".to_string(),
                            object: "text_completion".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
                        })
715
                        .unwrap_or_else(|_e| Event::default())
716
717
718
719
720
721
722
723
724
725
726
727
728
729
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
730

731
732
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
763
                )
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
782

783
784
785
786
787
788
789
790
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
817
818
819
820
821
822
823
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
926
927
928
929
930
931
932
933
934
935
936

        let response = Completion {
            id: "".to_string(),
            object: "text_completion".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
937
            choices,
938
            usage: Usage {
939
940
941
                prompt_tokens,
                completion_tokens,
                total_tokens,
942
943
944
            },
        };

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
961
962
963
964
        Ok((headers, Json(response)).into_response())
    }
}

965
966
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
987
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
988
989
990
991
992
993
994
995
996
997
998
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
999
1000
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1001
    Extension(compute_type): Extension<ComputeType>,
1002
1003
1004
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1005
    let span = tracing::Span::current();
1006
    metrics::increment_counter!("tgi_request_count");
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    let ChatRequest {
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1018
        temperature,
1019
1020
1021
1022
1023
1024
1025
1026
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1027
1028
1029
1030
1031
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1032
1033
1034
1035

    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

1049
1050
1051
    let grammar_with_prompt = tool_grammar
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1052

1053
1054
1055
    let typed_grammar = grammar_with_prompt
        .as_ref()
        .map(|(grammar, _)| grammar.clone());
drbh's avatar
drbh committed
1056

1057
1058
1059
1060
1061
1062
1063
    // apply chat template to flatten the request into a single input
    let inputs = match infer.apply_chat_template(messages, grammar_with_prompt) {
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1064
1065
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1066
1067
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1068
                }),
1069
1070
            ));
        }
drbh's avatar
drbh committed
1071
1072
    };

1073
1074
1075
1076
1077
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1078
            temperature,
1079
            repetition_penalty,
1080
            frequency_penalty: req.frequency_penalty,
1081
            top_k: None,
1082
            top_p: req.top_p,
1083
            typical_p: None,
1084
            do_sample,
1085
1086
            max_new_tokens,
            return_full_text: None,
1087
            stop,
1088
1089
1090
            truncate: None,
            watermark: false,
            details: true,
1091
            decoder_input_details: !stream,
1092
            seed,
1093
            top_n_tokens: req.top_logprobs,
1094
            grammar: typed_grammar,
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1113
1114
1115
1116
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1117
1118
1119
1120
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1121
1122
1123
1124
1125
1126
1127
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1128
1129
            };

1130
1131
1132
1133
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
1134
1135
                    content,
                    tool_calls,
1136
                    current_time,
1137
                    logprobs,
1138
1139
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
1140
1141
1142
1143
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1144
1145
        };

1146
1147
1148
1149
1150
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1151
            span,
1152
1153
        )
        .await;
1154
1155
1156
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1157
1158
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1159
1160
1161
1162
1163
1164

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;
1177
            let tool_calls = vec![ToolCall {
1178
                id: "0".to_string(),
drbh's avatar
drbh committed
1179
1180
1181
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
                    name: gen_text_value
                        .get("function")
                        .and_then(|f| f.get("_name"))
                        .and_then(|name| name.as_str())
                        .unwrap_or("default_function_name")
                        .to_string(),
                    // Serialize the JSON object obtained from "function" to an escaped JSON string
                    arguments: gen_text_value
                        .get("function")
                        .map(|f| {
                            let mut f_cloned = f.clone();
                            if let Value::Object(ref mut props) = f_cloned {
                                props.remove("_name");
                            }
                            f_cloned
                        })
                        .unwrap_or_default(),
drbh's avatar
drbh committed
1199
                },
1200
1201
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1202
1203
1204
        } else {
            (None, Some(generation.generated_text))
        };
1205
1206
1207
1208
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1209
            output,
1210
1211
1212
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1213
            tool_calls,
1214
1215
1216
1217
1218
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1219
1220
}

drbh's avatar
drbh committed
1221
1222
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1255
    let span = tracing::Span::current();
drbh's avatar
drbh committed
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1287
                generate_internal(
drbh's avatar
drbh committed
1288
                    Extension(infer.clone()),
1289
                    compute_type.clone(),
drbh's avatar
drbh committed
1290
                    Json(generate_request),
1291
                    span.clone(),
drbh's avatar
drbh committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1314
1315
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1326
1327
1328
1329
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1330
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1331
1332
1333
1334
1335
1336
1337
1338
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1339
1340
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1341
1342
1343
1344
1345
1346
1347
1348
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1349
        Ok(Json(TokenizeResponse(tokens)))
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1361
1362
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1363
1364
1365
1366
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
1367
1368
1369
1370
1371
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1372
1373
1374
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1375
1376
1377
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
OlivierDehaene's avatar
OlivierDehaene committed
1378
    master_shard_uds_path: String,
1379
    model_info: HubModelInfo,
1380
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1381
    max_concurrent_requests: usize,
1382
    max_best_of: usize,
1383
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1384
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1385
    max_input_tokens: usize,
1386
    max_total_tokens: usize,
1387
    waiting_served_ratio: f32,
1388
    max_batch_prefill_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1389
    max_batch_total_tokens: Option<u32>,
1390
    max_waiting_tokens: usize,
1391
    max_batch_size: Option<usize>,
1392
    tokenizer: Option<Tokenizer>,
1393
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1394
1395
    validation_workers: usize,
    addr: SocketAddr,
1396
    allow_origin: Option<AllowOrigin>,
1397
    ngrok: bool,
1398
1399
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1400
    tokenizer_config: HubTokenizerConfig,
drbh's avatar
drbh committed
1401
    processor_config: HubProcessorConfig,
1402
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1403
    grammar_support: bool,
1404
    max_client_batch_size: usize,
OlivierDehaene's avatar
OlivierDehaene committed
1405
) -> Result<(), WebServerError> {
1406
1407
1408
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1409
1410
1411
1412
1413
1414
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1415
    chat_completions,
1416
    completions,
1417
    tokenize,
1418
1419
1420
1421
1422
1423
1424
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1425
    GrammarType,
1426
1427
    ChatRequest,
    Message,
1428
    ChatCompletionComplete,
1429
1430
1431
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1432
1433
1434
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1435
    ChatCompletion,
1436
1437
1438
    CompletionRequest,
    CompletionComplete,
    CompletionCompleteChunk,
1439
1440
1441
1442
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1443
1444
    TokenizeResponse,
    SimpleToken,
1445
1446
1447
1448
1449
1450
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1451
    GrammarType,
1452
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1453
1454
1455
1456
1457
1458
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1471
1472
1473
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1474
    // Create state
OlivierDehaene's avatar
OlivierDehaene committed
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

    // Open connection, get model info and warmup
    let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
        Arc<dyn Scheduler + Send + Sync>,
        HealthCheck,
        ShardInfo,
        u32,
    ) = {
        // Helper function to check both v2 and v3
        let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
            match max_supported_batch_total_tokens {
                // Older models do not support automatic max-batch-total-tokens
                None => {
                    let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
                        16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
                    );
                    tracing::warn!("Model does not support automatic max batch total tokens");
                    Ok(max_batch_total_tokens)
                }
                // Flash attention models return their max supported total tokens
                Some(max_supported_batch_total_tokens) => {
                    // Warn if user added his own max-batch-total-tokens as we will ignore it
                    if max_batch_total_tokens.is_some() {
                        tracing::warn!(
                            "`--max-batch-total-tokens` is deprecated for Flash \
                        Attention models."
                        );
                        tracing::warn!(
                            "Inferred max batch total tokens: {max_supported_batch_total_tokens}"
                        );
                    }
                    if max_total_tokens as u32 > max_supported_batch_total_tokens {
                        return Err(WebServerError::NotEnoughMemory(max_total_tokens));
                    }

                    Ok(max_supported_batch_total_tokens)
                }
            }
        };

        let generation_health = Arc::new(AtomicBool::new(false));

        match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
            Ok(mut sharded_client) => {
                // server is running on v3
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV3::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V3");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
            Err(_) => {
                let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
                    .await
                    .map_err(WebServerError::Connection)?;

                // server is running on v2
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV2::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V2");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
        }
    };
    tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");

1610
1611
1612
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1613
        config,
1614
        max_best_of,
1615
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1616
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1617
        max_input_tokens,
1618
        max_total_tokens,
drbh's avatar
drbh committed
1619
        grammar_support,
1620
    );
OlivierDehaene's avatar
OlivierDehaene committed
1621

1622
    let infer = Infer::new(
OlivierDehaene's avatar
OlivierDehaene committed
1623
        scheduler,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1624
        validation,
1625
        max_concurrent_requests,
1626
        tokenizer_config,
drbh's avatar
drbh committed
1627
        processor_config,
1628
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1629

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1644
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1658
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1659
1660
1661
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1662

1663
    // Prometheus handler
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1674
1675
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1676
        .unwrap();
1677
1678
1679
1680
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1681
1682
1683
1684
1685
1686
1687
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1698
        max_input_tokens,
1699
1700
1701
1702
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1703
        max_batch_size,
1704
        validation_workers,
1705
        max_client_batch_size,
1706
        router: env!("CARGO_PKG_NAME"),
1707
1708
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1709
        docker_label: option_env!("DOCKER_LABEL"),
1710
1711
    };

drbh's avatar
drbh committed
1712
1713
1714
1715
1716
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1717
1718
1719
1720
1721
1722
1723
1724
1725
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1726
            // limiting mutability to the smallest scope necessary
1727
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1728
1729
1730
1731
1732
1733
1734
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1735
    // Configure Swagger UI
drbh's avatar
drbh committed
1736
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1737
1738
1739

    // Define base and health routes
    let base_routes = Router::new()
1740
        .route("/", post(compat_generate))
1741
        .route("/", get(health))
1742
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1743
        .route("/generate", post(generate))
1744
        .route("/generate_stream", post(generate_stream))
1745
        .route("/v1/chat/completions", post(chat_completions))
1746
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1747
        .route("/vertex", post(vertex_compatibility))
1748
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1749
        .route("/health", get(health))
1750
        .route("/ping", get(health))
1751
1752
1753
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1754
    let aws_sagemaker_route = if messages_api_enabled {
1755
1756
1757
1758
1759
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1760
1761
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1762

1763
    // Combine routes and layers
drbh's avatar
drbh committed
1764
    let mut app = Router::new()
1765
1766
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1785
        .layer(Extension(info))
1786
        .layer(Extension(health_ext.clone()))
1787
1788
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1789
        .layer(Extension(compute_type))
1790
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1791
        .layer(OtelAxumLayer::default())
1792
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1793

OlivierDehaene's avatar
OlivierDehaene committed
1794
1795
    tracing::info!("Connected");

1796
1797
1798
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
1799
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
1814
1815
1816

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
1817
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
1818
1819
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
1820
    }
1821
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1822
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1849
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1850
}
1851
1852
1853
1854
1855
1856
1857
1858
1859

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1860
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1861
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1862
1863
1864
1865
1866
1867
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1868
                error_type: err.error_type().to_string(),
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1879
                error_type: err.error_type().to_string(),
1880
1881
1882
1883
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Unable to connect to the Python model shards: {0}")]
    Connection(ClientError),
    #[error("Unable to clear the Python model shards cache: {0}")]
    Cache(ClientError),
    #[error("Unable to get the Python model shards info: {0}")]
    Info(ClientError),
    #[error("Unable to warmup the Python model shards: {0}")]
    Warmup(ClientError),
    #[error("Not enough memory to handle `max_total_tokens={0}`")]
    NotEnoughMemory(usize),
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}