server.rs 39.4 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
7
8
9
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
    ChatRequest, CompatGenerateRequest, Details, ErrorResponse, FinishReason, GenerateParameters,
    GenerateRequest, GenerateResponse, HubModelInfo, HubTokenizerConfig, Infer, Info, Message,
    PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Validation,
10
};
Olivier Dehaene's avatar
Olivier Dehaene committed
11
use axum::extract::Extension;
12
use axum::http::{HeaderMap, Method, StatusCode};
13
use axum::response::sse::{Event, KeepAlive, Sse};
14
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use axum::routing::{get, post};
16
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
17
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
18
use futures::stream::StreamExt;
19
use futures::Stream;
20
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
21
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
22
use std::net::SocketAddr;
23
24
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
25
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
26
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
27
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use tokio::time::Instant;
29
use tower_http::cors::{AllowOrigin, CorsLayer};
30
use tracing::{info_span, instrument, Instrument};
31
32
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
33

34
35
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
55
)]
56
#[instrument(skip(infer, req))]
57
async fn compat_generate(
58
    Extension(default_return_full_text): Extension<bool>,
59
    infer: Extension<Infer>,
60
    compute_type: Extension<ComputeType>,
61
    Json(mut req): Json<CompatGenerateRequest>,
62
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
63
64
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
65
        req.parameters.return_full_text = Some(default_return_full_text)
66
67
    }

68
69
    // switch on stream
    if req.stream {
70
        Ok(generate_stream(infer,compute_type,  Json(req.into()))
71
72
73
            .await
            .into_response())
    } else {
74
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
75
        // wrap generation inside a Vec to match api-inference
76
        Ok((headers, Json(vec![generation])).into_response())
77
78
79
    }
}

80
81
/// Text Generation Inference endpoint info
#[utoipa::path(
82
83
84
85
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
86
87
)]
#[instrument]
88
89
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
90
91
}

92
#[utoipa::path(
93
94
95
96
97
98
99
100
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
101
102
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
103
/// Health check method
104
105
106
107
108
109
110
111
112
113
114
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
115
116
}

117
118
/// Generate tokens
#[utoipa::path(
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
134
)]
135
#[instrument(
136
137
skip_all,
fields(
138
parameters = ? req.parameters,
139
140
141
142
143
144
145
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
146
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
147
async fn generate(
148
    infer: Extension<Infer>,
149
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
150
    Json(req): Json<GenerateRequest>,
151
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
152
    let span = tracing::Span::current();
153
    let start_time = Instant::now();
154
    metrics::increment_counter!("tgi_request_count");
155

156
    tracing::debug!("Input: {}", req.inputs);
157

158
    let compute_characters = req.inputs.chars().count();
159
    let mut add_prompt = None;
160
161
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
162
163
    }

Nicolas Patry's avatar
Nicolas Patry committed
164
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
165
166

    // Inference
167
    let (response, best_of_responses) = match req.parameters.best_of {
168
        Some(best_of) if best_of > 1 => {
169
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
170
171
            (response, Some(best_of_responses))
        }
172
        _ => (infer.generate(req).await?, None),
173
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
174

OlivierDehaene's avatar
OlivierDehaene committed
175
    // Token details
176
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
177
    let details = match details {
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
198
                            top_tokens: response.top_tokens,
199
200
201
202
203
204
205
206
207
208
209
210
211
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
212
                top_tokens: response.top_tokens,
213
214
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
215
216
217
        false => None,
    };

218
219
220
221
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
222
223
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
224

225
226
227
228
229
230
231
232
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

233
234
    // Headers
    let mut headers = HeaderMap::new();
235
    headers.insert("x-compute-type", compute_type.parse().unwrap());
236
237
238
239
240
241
242
243
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
244
245
246
247
248
249
250
251
252
253
254
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
255
    );
256
257
258
259
260
261
262
263
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
264
265
266
267
268
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
269

270
271
    // Metrics
    metrics::increment_counter!("tgi_request_success");
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
286
287
288
289
290
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
291
    // Send response
292
293
294
295
296
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

297
298
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
299

300
    let response = GenerateResponse {
301
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
302
        details,
303
    };
304
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
305
306
}

Yannic Kilcher's avatar
Yannic Kilcher committed
307
/// Generate a stream of token using Server-Sent Events
308
#[utoipa::path(
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
329
)]
330
#[instrument(
331
332
skip_all,
fields(
333
parameters = ? req.parameters,
334
335
336
337
338
339
340
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
341
342
)]
async fn generate_stream(
343
    Extension(infer): Extension<Infer>,
344
    Extension(compute_type): Extension<ComputeType>,
345
    Json(req): Json<GenerateRequest>,
346
347
348
349
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
350
351
352
353
354
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
355
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
356
357
358
359
360
361
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
362
    ComputeType(compute_type): ComputeType,
363
364
365
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
366
367
    let span = tracing::Span::current();
    let start_time = Instant::now();
368
    metrics::increment_counter!("tgi_request_count");
369

370
    tracing::debug!("Input: {}", req.inputs);
371

372
    let compute_characters = req.inputs.chars().count();
373
374

    let mut headers = HeaderMap::new();
375
    headers.insert("x-compute-type",compute_type.parse().unwrap());
376
377
378
379
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
380
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
381

382
383
384
385
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
386
387

        let mut add_prompt = None;
388
389
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
390
        }
391
        let details = req.parameters.details;
392

393
        let best_of = req.parameters.best_of.unwrap_or(1);
394
395
396
397
398
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
399
        } else if req.parameters.decoder_input_details {
400
401
402
403
404
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
405
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
406
                // Keep permit as long as generate_stream lives
407
                Ok((_permit, _input_length, mut response_stream)) => {
408
                    let mut index = 0;
409
410
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
411
                        index += 1;
412
413
414
415
416
417
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
418
419
420
421
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
422
423
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

424
425
                                        // StreamResponse
                                        let stream_token = StreamResponse {
426
                                            index,
427
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
428
                                            top_tokens,
429
430
431
                                            generated_text: None,
                                            details: None,
                                        };
432
433
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
434
                                    }
435
436
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
437
                                        token,
438
439
440
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
441
                                        top_tokens,
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
470
471
472
473
474
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
475
476
477
478
479
480
481
482
483
484
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

485
486
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
487

488
                                        let stream_token = StreamResponse {
489
                                            index,
490
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
491
                                            top_tokens,
492
493
494
495
                                            generated_text: Some(output_text),
                                            details
                                        };

496
497
498

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
499
500
                                        break;
                                    }
501
502
                                }
                            }
503
504
505
506
507
508
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
509
510
                        }
                    }
511
512
513
514
515
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
516
                }
517
518
519
520
521
522
523
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
524
                yield Ok(Event::from(err));
525
526
527
528
            }
        }
    };

529
530
531
532
533
534
535
536
537
538
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
539
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
564
    Extension(compute_type): Extension<ComputeType>,
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
        .frequency_penalty
        // rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0)
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
580
    let inputs = match infer.apply_chat_template(req.messages) {
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
600
            temperature: req.temperature,
601
602
            repetition_penalty,
            top_k: None,
603
            top_p: req.top_p,
604
605
606
607
608
609
610
611
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
612
            decoder_input_details: !stream,
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
            seed,
            top_n_tokens: None,
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
                    stream_token.token.text,
                    current_time,
                    stream_token.index,
                    logprobs.then_some(stream_token.token.logprob),
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

        let (headers, response_stream) =
653
            generate_stream_internal(infer, compute_type, Json(generate_request), on_message_callback).await;
654
655
656
657
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
        let (headers, Json(generation)) =
658
            generate(Extension(infer), Extension(compute_type), Json(generate_request)).await?;
659
660
661
662
663
664
665
666
667
668

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
669
            generation.generated_text,
670
671
672
673
674
675
676
677
            current_time,
            generation.details.unwrap(),
            logprobs,
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
678
679
}

680
681
682
683
684
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
685
    request_body = GenerateRequest,
686
687
688
689
690
691
692
693
694
695
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
696
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
714
        Ok(Json(TokenizeResponse(tokens)))
715
716
717
718
719
720
721
722
723
724
725
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

726
727
/// Prometheus metrics scrape endpoint
#[utoipa::path(
728
729
730
731
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
732
733
734
735
736
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

737
738
739
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
740
741
742
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
743
744
    model_info: HubModelInfo,
    shard_info: ShardInfo,
745
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
746
    max_concurrent_requests: usize,
747
    max_best_of: usize,
748
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
749
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
750
    max_input_length: usize,
751
    max_total_tokens: usize,
752
    waiting_served_ratio: f32,
753
    max_batch_prefill_tokens: u32,
754
    max_batch_total_tokens: u32,
755
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
756
    client: ShardedClient,
757
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
758
759
    validation_workers: usize,
    addr: SocketAddr,
760
    allow_origin: Option<AllowOrigin>,
761
762
    ngrok: bool,
    ngrok_authtoken: Option<String>,
763
    ngrok_edge: Option<String>,
764
    tokenizer_config: HubTokenizerConfig,
765
    messages_api_enabled: bool,
766
) -> Result<(), axum::BoxError> {
767
768
769
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
770
771
772
773
774
775
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
776
777
    chat_completions,
    tokenize,
778
779
780
781
782
783
784
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
785
786
787
788
789
790
    ChatRequest,
    Message,
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
    ChatCompletion,
791
792
793
794
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
795
796
    TokenizeResponse,
    SimpleToken,
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
815
816
817
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
818
    // Create state
819
820
821
    let validation = Validation::new(
        validation_workers,
        tokenizer,
822
        max_best_of,
823
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
824
        max_top_n_tokens,
825
826
827
        max_input_length,
        max_total_tokens,
    );
828
829
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
830
831
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
832
        validation,
833
        waiting_served_ratio,
834
        max_batch_prefill_tokens,
835
        max_batch_total_tokens,
836
837
        max_waiting_tokens,
        max_concurrent_requests,
838
        shard_info.requires_padding,
839
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
840
        shard_info.speculate,
841
        generation_health,
842
        tokenizer_config,
843
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
873
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
874
875
876
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
877

878
    // Prometheus handler
879
880
881
882
883
884
885
886
887
888
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
889
890
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
891
        .unwrap();
892
893
894
895
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

896
897
898
899
900
901
902
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
921
        docker_label: option_env!("DOCKER_LABEL"),
922
923
    };

924
925
926
927
928
    // Configure Swagger UI
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi());

    // Define base and health routes
    let base_routes = Router::new()
929
        .route("/", post(compat_generate))
930
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
931
        .route("/generate", post(generate))
932
        .route("/generate_stream", post(generate_stream))
933
        .route("/v1/chat/completions", post(chat_completions))
934
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
935
        .route("/health", get(health))
936
        .route("/ping", get(health))
937
938
939
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
940
    let aws_sagemaker_route = if messages_api_enabled {
941
942
943
944
945
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

946
947
    let compute_type = ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));

948
949
950
951
952
    // Combine routes and layers
    let app = Router::new()
        .merge(swagger_ui)
        .merge(base_routes)
        .merge(aws_sagemaker_route)
953
        .layer(Extension(info))
954
        .layer(Extension(health_ext.clone()))
955
956
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
957
        .layer(Extension(compute_type))
958
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
959
        .layer(OtelAxumLayer::default())
960
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
961

962
963
964
965
966
967
968
969
970
971
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

972
973
974
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
975
976
977
978
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
979
980
                .labeled_tunnel()
                .label("edge", edge);
981
982

            let listener = tunnel.listen().await.unwrap();
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
998
999
1000
1001
1002
1003

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1004
                .await?;
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1021
            .await?;
1022
    }
1023
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1024
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1051
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1052
}
1053

1054
1055
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1056
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1057
1058
1059
1060
1061
1062
1063
1064
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1065
1066
1067
1068
1069
1070
1071
1072
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1073
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1074
1075
1076
1077
1078
1079
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1080
                error_type: err.error_type().to_string(),
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1091
                error_type: err.error_type().to_string(),
1092
1093
1094
1095
            })
            .unwrap()
    }
}