main.rs 65.3 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
9
use std::env;
10
use std::ffi::OsString;
11
use std::io::{BufRead, BufReader};
12
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
14
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
17
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
18
19
20
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
21
22
23
24
use std::{
    fs, io,
    io::{Read, Write},
};
25
use thiserror::Error;
26
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
27

28
29
mod env_runtime;

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
    let mut prefix_caching: Option<String> = std::env::var("USE_PREFIX_CACHING").ok();
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
                    Some("gemma2") | Some("falcon") | Some("deepseek_v2") => {
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
                                "Forcing flash decoding because model {} requires it",
                                config.model_type.as_ref().unwrap()
                            );
                            attention = Some("flashdecoding".to_string());
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
                    tracing::info!("Forcing flash decoding because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some("flashdecoding".to_string());
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());
    let attention = attention.unwrap_or("flashinfer".to_string());
    (prefix_caching, attention)
}

118
#[derive(Deserialize)]
119
struct RawConfig {
120
    max_position_embeddings: Option<usize>,
121
    n_positions: Option<usize>,
122
    model_type: Option<String>,
123
    max_seq_len: Option<usize>,
124
    quantization_config: Option<QuantizationConfig>,
125
126
127
128
129
130
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
131
132
133
134
135
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
136
137
}

138
139
140
#[derive(Deserialize)]
struct VisionConfig {}

141
142
143
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
144
    quantize: Option<Quantization>,
145
146
147
148
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
149
150
151
152
153
154
155
156
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
157
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
177
178
        Config {
            max_position_embeddings,
179
            quantize,
180
181
182
183
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
184
185
186
187
        }
    }
}

188
189
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
190
enum Quantization {
191
    /// 4 bit quantization. Requires a specific AWQ quantized model:
192
    ///   <https://hf.co/models?search=awq>.
193
    /// Should replace GPTQ models wherever possible because of the better latency
194
195
196
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
197
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
198
    Eetq,
199
200
201
202
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
203
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
204
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
205
206
207
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
208
209
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
210
211
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
212
213
214
215
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
216
    Bitsandbytes,
217
218
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
219
    BitsandbytesNf4,
220
221
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
222
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
223
224
225
226
227
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
228
229
230
231
232
233
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
234
235
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
236
237
238
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
239
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
240
241
                write!(f, "bitsandbytes-nf4")
            }
242
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
243
244
                write!(f, "bitsandbytes-fp4")
            }
245
246
247
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
248
249
250
            Quantization::Gptq => {
                write!(f, "gptq")
            }
251
252
253
            Quantization::Marlin => {
                write!(f, "marlin")
            }
254
255
256
            Quantization::Awq => {
                write!(f, "awq")
            }
257
258
259
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
260
261
262
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
263
264
265
266
        }
    }
}

267
268
269
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
270
    #[clap(name = "bfloat16")]
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
335
336
337
338
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
339
340
341
342
343
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
344
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
345
    model_id: String,
346
347
348

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
349
    #[clap(long, env)]
350
    revision: Option<String>,
351

352
353
354
355
356
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

357
    /// Whether to shard the model across multiple GPUs
358
359
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
360
361
    #[clap(long, env)]
    sharded: Option<bool>,
362
363

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
364
365
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
366
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
367
368
    #[clap(long, env)]
    num_shard: Option<usize>,
369

370
    /// Whether you want the model to be quantized.
371
372
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
373

Nicolas Patry's avatar
Nicolas Patry committed
374
375
376
377
378
379
380
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

381
382
383
384
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

385
386
387
388
389
390
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

391
392
393
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
394
395
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
396
397
398
399

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
400
401
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
402
403
404
405
406
407

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
408
409
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
410

Nicolas Patry's avatar
Nicolas Patry committed
411
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
412
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
413
414
415
416
417
418
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

419
420
421
422
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
423
424
425
426
427
428
429
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
430
431
432
433
434
435
436
437
438

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
439
440
441
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
442
443
444
445
446
447
448
449
450
451
452

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
453
    #[clap(default_value = "0.3", long, env)]
454
    waiting_served_ratio: f32,
455

456
457
458
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
459
460
461
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
480
481
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
500
501
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
502

503
504
505
506
507
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

508
509
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
510
511
512
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
513

514
515
516
517
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

518
    /// The port to listen on.
519
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
520
    port: u16,
521
522
523

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
524
525
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
526
527

    /// The address the master shard will listen on. (setting used by torch distributed)
528
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
529
    master_addr: String,
530
531

    /// The address the master port will listen on. (setting used by torch distributed)
532
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
533
    master_port: usize,
534
535
536

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
537
    #[clap(long, env)]
538
    huggingface_hub_cache: Option<String>,
539
540
541

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
542
543
    #[clap(long, env)]
    weights_cache_override: Option<String>,
544
545
546
547
548

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
549
    #[clap(long, env)]
550
    disable_custom_kernels: bool,
551

552
553
554
555
556
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

577
    /// Outputs the logs in JSON format (useful for telemetry)
578
    #[clap(long, env)]
579
    json_output: bool,
580

581
582
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
583

584
585
586
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

587
588
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
589
590
591
592

    #[clap(long, env)]
    api_key: Option<String>,

593
594
595
596
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
597

598
599
600
601
602
603
604
605
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

606
    /// ngrok edge
607
    #[clap(long, env)]
608
    ngrok_edge: Option<String>,
609

610
611
612
613
614
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
615
616
617
618
619
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

620
621
622
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
623
624
625
626

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
627
628
629
630
631

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
632

633
634
635
636
637
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
638
639
}

640
641
642
#[derive(Debug)]
enum ShardStatus {
    Ready,
643
    Failed(usize),
644
}
645

646
647
648
649
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
650
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
651
    speculate: Option<usize>,
652
    dtype: Option<Dtype>,
653
    trust_remote_code: bool,
654
655
656
657
658
659
660
661
662
663
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
664
    cuda_graphs: Vec<usize>,
665
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
666
667
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
668
669
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
670
    max_input_tokens: usize,
drbh's avatar
drbh committed
671
    lora_adapters: Option<String>,
672
    otlp_endpoint: Option<String>,
673
    otlp_service_name: String,
674
    log_level: LevelFilter,
675
    status_sender: mpsc::Sender<ShardStatus>,
676
    shutdown: Arc<AtomicBool>,
677
678
    _shutdown_sender: mpsc::Sender<()>,
) {
679
680
681
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

682
683
684
685
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
686
687
688
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
689
690

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
691
    let mut shard_args = vec![
692
693
694
695
696
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
697
        log_level.to_string().to_uppercase(),
698
699
700
        "--json-output".to_string(),
    ];

701
702
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
703
        shard_args.push("--trust-remote-code".to_string());
704
705
    }

706
707
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
708
        shard_args.push("--sharded".to_string());
709
710
    }

711
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
712
713
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
714
    }
715

Nicolas Patry's avatar
Nicolas Patry committed
716
717
718
719
720
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

721
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
722
723
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
724
725
    }

726
727
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
728
729
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
730
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
731

Nicolas Patry's avatar
Nicolas Patry committed
732
733
734
735
736
737
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
738

739
    // OpenTelemetry Endpoint
740
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
741
742
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
743
744
    }

745
746
747
748
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

749
750
751
752
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

753
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
754
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
755

756
757
758
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

759
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
760
761
762
763
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
764
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
765

766
767
768
769
770
771
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

772
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
773
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
774

775
776
777
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

778
779
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
780
    envs.push((
781
782
783
784
785
786
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
787
        envs.push(("HF_TOKEN".into(), api_token.into()))
788
789
    };

Nicolas Patry's avatar
Nicolas Patry committed
790
791
792
793
794
795
796
797
798
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

799
800
801
802
803
804
805
806
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
807
808
809
810
811
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

812
813
814
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
815
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
816
817
818
819
820
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
821
        envs.push((
822
823
824
825
826
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

827
    // Enable experimental support for cuda graphs
828
829
830
831
832
833
834
835
836
837
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
838
839
    }

840
841
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
842
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
843
844
845
846
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
847
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
848
849
850
851
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
852
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
853
854
855
    }

    // Start process
856
    tracing::info!("Starting shard");
857
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
858
        .args(shard_args)
859
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
860
        .envs(envs)
861
        .stdin(Stdio::piped())
862
863
864
865
866
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
867
868
        Ok(p) => p,
        Err(err) => {
869
870
871
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
872
873
            }
            {
874
                tracing::error!("{}", err);
875
            }
876

877
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
878
879
880
881
882
            return;
        }
    };

    // Redirect STDOUT to the console
883
    let mut pstdin = p.stdin.take().unwrap();
884
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
885
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
886

887
    //stdout tracing thread
888
    thread::spawn(move || {
889
        log_lines(shard_stdout_reader);
890
    });
891
892
893
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
894
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
895
896
897
            err_sender.send(line).unwrap_or(());
        }
    });
898
899
900
901
902
903
904
905
906
907
908
909
    // We read stdin in another thread as it seems that lines() can block in some cases
    thread::spawn(move || {
        let mut stdin = io::stdin(); // We get `Stdin` here.
        loop {
            let mut buffer = vec![0; 4096];
            if let Ok(n) = stdin.read(&mut buffer) {
                if n > 0 {
                    let _ = pstdin.write_all(&buffer[..n]);
                }
            }
        }
    });
910
911
912
913
914
915

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
916
        if let Some(exit_status) = p.try_wait().unwrap() {
917
918
919
920
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
921

922
            tracing::error!("Shard complete standard error output:\n{err}");
923

924
            if let Some(signal) = exit_status.signal() {
925
926
927
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

928
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
929
930
931
932
            return;
        }

        // We received a shutdown signal
933
        if shutdown.load(Ordering::SeqCst) {
934
            terminate("shard", p, Duration::from_secs(90)).unwrap();
935
936
937
938
939
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
940
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
941
942
943
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
944
            tracing::info!("Waiting for shard to be ready...");
945
946
947
948
949
950
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

951
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
952
953
954
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
955
    shutdown.store(true, Ordering::SeqCst);
956
957
958
959
960
961
962

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
963
964
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
965
966
967
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
968
        },
969
    };
970
971
    let n_devices = devices.split(',').count();
    Some(n_devices)
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1005
1006
1007
1008
1009
1010
1011
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1012
1013
1014
1015
        }
    }
}

1016
impl TryFrom<&[u8]> for PythonLogMessage {
1017
1018
    type Error = serde_json::Error;

1019
1020
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1021
1022
1023
    }
}

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
                            stdout.write_all(line).unwrap();
                            if lines.peek().is_some() {
                                stdout.write_all(b"\n").unwrap();
                            }
                            stdout.flush().unwrap();
                        }
                    }
                }
            }
1046
1047
1048
1049
        }
    }
}

1050
1051
1052
1053
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1054
1055
1056
1057
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1058
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1059
            let n_devices = num_cuda_devices()
1060
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1061
            if n_devices <= 1 {
1062
1063
1064
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1065
            }
1066
            n_devices
1067
        }
1068
1069
1070
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1071
1072
1073
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1074
1075
            }
            num_shard
1076
        }
1077
1078
1079
1080
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1081
    };
1082
    if num_shard < 1 {
1083
1084
1085
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1086
    }
1087
    Ok(num_shard)
1088
}
1089

1090
#[derive(Debug, Error)]
1091
enum LauncherError {
1092
    #[error("Invalid argument: {0}")]
1093
    ArgumentValidation(String),
1094
    #[error("not enough cuda devices: {0}")]
1095
    NotEnoughCUDADevices(String),
1096
    #[error("Download error")]
1097
    DownloadError,
1098
    #[error("Shard cannot start")]
1099
    ShardCannotStart,
1100
    #[error("Shard disconnected")]
1101
    ShardDisconnected,
1102
    #[error("Shard failed")]
1103
    ShardFailed,
1104
    #[error("Webserver failed")]
1105
    WebserverFailed,
1106
    #[error("Webserver cannot start")]
1107
1108
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1109

1110
1111
1112
1113
1114
1115
1116
1117
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1118
1119
1120
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1121
    let mut download_args = vec![
1122
        "download-weights".to_string(),
1123
        model_id.to_string(),
1124
1125
1126
1127
1128
1129
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1130

1131
    // Model optional revision
1132
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1133
1134
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1135
    }
1136

1137
    // Trust remote code for automatic peft fusion
1138
    if trust_remote_code {
1139
1140
1141
        download_args.push("--trust-remote-code".to_string());
    }

1142
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1143
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1144

1145
1146
1147
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1148
1149
1150
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1151
    // If huggingface_hub_cache is set, pass it to the download process
1152
    // Useful when running inside a docker container
1153
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1154
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1155
    };
1156

1157
1158
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1159
    envs.push((
1160
1161
1162
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1163

1164
1165
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1166
        envs.push(("HF_TOKEN".into(), api_token.into()))
1167
    };
1168

1169
1170
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1171
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1172
        envs.push((
1173
1174
1175
1176
1177
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1178
    // Start process
1179
    tracing::info!("Starting check and download process for {model_id}");
1180
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1181
        .args(download_args)
1182
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1183
        .envs(envs)
1184
1185
1186
1187
1188
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1189
1190
        Ok(p) => p,
        Err(err) => {
1191
1192
1193
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1194
1195
            } else {
                tracing::error!("{}", err);
1196
            }
1197

1198
1199
1200
            return Err(LauncherError::DownloadError);
        }
    };
1201

1202
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1203

1204
    thread::spawn(move || {
1205
        log_lines(download_stdout);
1206
1207
1208
1209
1210
1211
1212
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1213
        for line in download_stderr.lines().map_while(Result::ok) {
1214
1215
            err_sender.send(line).unwrap_or(());
        }
1216
    });
1217

1218
    loop {
1219
1220
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1221
                tracing::info!("Successfully downloaded weights for {model_id}");
1222
                break;
1223
            }
1224
1225

            let mut err = String::new();
1226
1227
1228
1229
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1230
1231
1232
1233
1234
1235
1236
1237
1238
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1239
        }
1240
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1241
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1242
1243
1244
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1245
    }
1246
1247
    Ok(())
}
1248

1249
#[allow(clippy::too_many_arguments)]
1250
1251
1252
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1253
    cuda_graphs: Vec<usize>,
1254
    max_total_tokens: usize,
1255
    max_input_tokens: usize,
1256
    quantize: Option<Quantization>,
1257
    max_log_level: LevelFilter,
1258
    shutdown: Arc<AtomicBool>,
1259
1260
1261
1262
1263
1264
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1265
1266
    // Start shard processes
    for rank in 0..num_shard {
1267
1268
1269
1270
1271
1272
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1273
1274
1275
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1276
        let otlp_endpoint = args.otlp_endpoint.clone();
1277
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1278
        let speculate = args.speculate;
1279
        let dtype = args.dtype;
1280
        let trust_remote_code = args.trust_remote_code;
1281
1282
1283
1284
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1285
        let cuda_graphs_clone = cuda_graphs.clone();
1286
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1287
1288
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1289
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1290
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1291
1292
        thread::spawn(move || {
            shard_manager(
1293
                model_id,
1294
                revision,
1295
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1296
                speculate,
1297
                dtype,
1298
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1299
1300
1301
1302
1303
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1304
1305
                huggingface_hub_cache,
                weights_cache_override,
1306
                disable_custom_kernels,
1307
1308
                watermark_gamma,
                watermark_delta,
1309
                cuda_graphs_clone,
1310
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1311
1312
                rope_scaling,
                rope_factor,
1313
1314
                max_total_tokens,
                max_batch_size,
1315
                max_input_tokens,
drbh's avatar
drbh committed
1316
                lora_adapters,
1317
                otlp_endpoint,
1318
                otlp_service_name,
1319
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1341
            Ok(ShardStatus::Failed(rank)) => {
1342
                tracing::error!("Shard {rank} failed to start");
1343
                shutdown_shards(shutdown, shutdown_receiver);
1344
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1345
1346
1347
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1348
                shutdown_shards(shutdown, shutdown_receiver);
1349
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1350
1351
1352
            }
        }
    }
1353
1354
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1355

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1368
fn spawn_webserver(
1369
    num_shard: usize,
1370
    args: Args,
1371
1372
1373
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1374
    shutdown: Arc<AtomicBool>,
1375
    shutdown_receiver: &mpsc::Receiver<()>,
1376
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1377
1378
1379
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1380
    let mut router_args = vec![
1381
1382
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1383
        "--max-concurrent-requests".to_string(),
1384
        args.max_concurrent_requests.to_string(),
1385
        "--max-best-of".to_string(),
1386
        args.max_best_of.to_string(),
1387
        "--max-stop-sequences".to_string(),
1388
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1389
1390
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1391
1392
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1393
        "--max-total-tokens".to_string(),
1394
        max_total_tokens.to_string(),
1395
        "--max-batch-prefill-tokens".to_string(),
1396
        max_batch_prefill_tokens.to_string(),
1397
        "--waiting-served-ratio".to_string(),
1398
        args.waiting_served_ratio.to_string(),
1399
        "--max-waiting-tokens".to_string(),
1400
        args.max_waiting_tokens.to_string(),
1401
1402
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1403
1404
        "--hostname".to_string(),
        args.hostname.to_string(),
1405
        "--port".to_string(),
1406
        args.port.to_string(),
1407
        "--master-shard-uds-path".to_string(),
1408
        format!("{}-0", args.shard_uds_path),
1409
        "--tokenizer-name".to_string(),
1410
        args.model_id,
1411
1412
    ];

1413
    // Pass usage stats flags to router
1414
1415
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1416

drbh's avatar
drbh committed
1417
1418
1419
1420
1421
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1422
1423
1424
1425
1426
1427
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1428
1429
1430
1431
1432
1433
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1434
1435
1436
1437
1438
1439
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1440
1441
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1442
1443
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1444
1445
    }

1446
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1447
        router_args.push("--json-output".to_string());
1448
1449
    }

1450
    // OpenTelemetry
1451
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1452
1453
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1454
1455
    }

1456
1457
1458
1459
1460
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1461
1462
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1463
1464
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1465
1466
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1467
1468
1469
1470
1471
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1472
1473
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1474
1475
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1476
1477
1478
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1479
1480
    }

1481
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1482
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1483

1484
1485
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1486
        envs.push(("HF_TOKEN".into(), api_token.into()))
1487
    };
1488

1489
1490
1491
1492
1493
1494
1495
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1496
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1497
1498
        .args(router_args)
        .envs(envs)
1499
1500
1501
1502
1503
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1504
1505
        Ok(p) => p,
        Err(err) => {
1506
            tracing::error!("Failed to start webserver: {}", err);
1507
1508
1509
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1510
1511
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1512
            }
1513

1514
            shutdown_shards(shutdown, shutdown_receiver);
1515
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1516
1517
1518
        }
    };

1519
1520
1521
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1522
1523

    thread::spawn(move || {
1524
1525
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1526
        for line in stdout.lines() {
1527
            println!("{}", line.unwrap());
1528
        }
1529
1530
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1531
        }
1532
1533
1534
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1535

OlivierDehaene's avatar
OlivierDehaene committed
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1559
1560
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1561
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1562

1563
    // Filter events with LOG_LEVEL
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1580

1581
    if args.json_output {
1582
1583
1584
1585
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1586
    } else {
1587
1588
1589
1590
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1591
1592
    }

1593
1594
1595
1596
1597
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1598
    tracing::info!("{:#?}", args);
1599

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1614
                }
1615
                max_default
1616
            } else {
1617
                max_position_embeddings
1618
            }
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
    std::env::set_var("USE_PREFIX_CACHING", prefix_caching);
    std::env::set_var("ATTENTION", attention);
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1672
    // Validate args
1673
    if max_input_tokens >= max_total_tokens {
1674
        return Err(LauncherError::ArgumentValidation(
1675
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1676
1677
        ));
    }
1678
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1679
        return Err(LauncherError::ArgumentValidation(format!(
1680
1681
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1682
1683
        )));
    }
1684

1685
1686
1687
1688
1689
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1690
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1691
1692
1693
1694
1695
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1696
1697
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1698
1699
            ),
        ) => {
1700
1701
1702
1703
1704
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1705
1706
1707
1708
1709
1710
1711
1712
1713
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1714
1715
1716
1717
1718
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1719
1720
1721
1722
1723
1724
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1725
1726

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1727
    if num_shard > 1 {
1728
1729
1730
1731
1732
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1733
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1734
1735
    }

1736
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1737
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1738
1739
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1740
                max_batch_prefill_tokens, max_batch_total_tokens
1741
1742
            )));
        }
1743
        if max_total_tokens as u32 > *max_batch_total_tokens {
1744
1745
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1746
                max_total_tokens, max_batch_total_tokens
1747
1748
1749
1750
            )));
        }
    }

1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1765
1766
1767
1768
1769
1770
1771
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1772

1773
    // Download and convert model weights
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1786
1787
1788
1789
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1800

OlivierDehaene's avatar
OlivierDehaene committed
1801
1802
1803
1804
1805
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1806
    // Shared shutdown bool
1807
    let shutdown = Arc::new(AtomicBool::new(false));
1808
1809
1810
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1811

1812
1813
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1814

1815
1816
1817
    spawn_shards(
        num_shard,
        &args,
1818
        cuda_graphs,
1819
        max_total_tokens,
1820
        max_input_tokens,
1821
        quantize,
1822
        max_log_level,
1823
1824
1825
1826
1827
1828
1829
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1830

1831
1832
1833
1834
1835
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1836

1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
    .map_err(|err| {
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
        err
    })?;
1850
1851
1852
1853
1854

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1855
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1856
            tracing::error!("Shard {rank} crashed");
1857
1858
1859
1860
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1861
        match webserver.try_wait().unwrap() {
1862
1863
1864
1865
1866
1867
1868
1869
1870
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1871
    }
1872
1873

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1874
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1875
1876
1877
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1878
}