"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "4c0bb411e54bef7aac0525470f722bf687612461"
main.rs 66.2 KB
Newer Older
1
use clap::{Parser, ValueEnum};
Nicolas Patry's avatar
Nicolas Patry committed
2
3
4
5
use hf_hub::{
    api::sync::{Api, ApiBuilder},
    Repo, RepoType,
};
6
7
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
8
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
9
use std::env;
10
use std::ffi::OsString;
11
use std::io::{BufRead, BufReader};
12
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
14
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
17
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
18
19
20
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
21
22
23
24
use std::{
    fs, io,
    io::{Read, Write},
};
25
use thiserror::Error;
26
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
27

28
mod env_runtime;
29
mod gpu;
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
fn get_config(
    model_id: &str,
    revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
    let mut path = std::path::Path::new(model_id).to_path_buf();
    let model_id = model_id.to_string();
    let filename = if !path.exists() {
        // Assume it's a hub id

        let api = if let Ok(token) = std::env::var("HF_TOKEN") {
            // env variable has precedence over on file token.
            ApiBuilder::new().with_token(Some(token)).build()?
        } else {
            Api::new()?
        };
        let repo = if let Some(ref revision) = revision {
            api.repo(Repo::with_revision(
                model_id,
                RepoType::Model,
                revision.to_string(),
            ))
        } else {
            api.model(model_id)
        };
        repo.get("config.json")?
    } else {
        path.push("config.json");
        path
    };

    let content = std::fs::read_to_string(filename)?;
    let config: RawConfig = serde_json::from_str(&content)?;

    let config: Config = config.into();
    Ok(config)
}

fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
69
    let compute_capability = gpu::get_cuda_capability();
70
71
72
73
74
75
76
77
78
79
80
81
    let mut prefix_caching: Option<String> = std::env::var("USE_PREFIX_CACHING").ok();
    let mut attention: Option<String> = std::env::var("ATTENTION").ok();
    if let Some(config) = config {
        if prefix_caching.is_none() {
            if config.vision_config.is_some() {
                tracing::info!("Disabling prefix caching because of VLM model");
                prefix_caching = Some("0".to_string());
            } else if config.is_encoder_decoder {
                tracing::info!("Disabling prefix caching because of seq2seq model");
                prefix_caching = Some("0".to_string());
            }
        }
82
83
84
85
86
87
88

        let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
            "paged"
        } else {
            "flashdecoding"
        };

89
90
91
92
93
94
95
96
97
98
99
100
        match config.head_dim {
            Some(h) if h == 64 || h == 128 || h == 256 => {
                if lora_adapters.is_some() && prefix_caching.is_none() {
                    tracing::info!("Disabling prefix caching because of lora adapters");
                    prefix_caching = Some("0".to_string());
                }
                match config.model_type.as_deref() {
                    Some("gemma2") | Some("falcon") | Some("deepseek_v2") => {
                        // Required because gemma2 needs bfloat16 which is not supported by
                        // flashinfer ?
                        if attention.is_none() {
                            tracing::info!(
101
                                "Forcing attention to '{fallback_attention}' because model {} requires it",
102
103
                                config.model_type.as_ref().unwrap()
                            );
104
105
106
107
108
                            attention = Some(fallback_attention.to_string());
                        }
                        if fallback_attention == "paged" && prefix_caching.is_none() {
                            tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
                            prefix_caching = Some("0".to_string());
109
110
111
112
113
114
115
116
                        }
                    }
                    Some("t5") => {}
                    _ => {}
                }
            }
            _ => {
                if attention.is_none() {
117
118
                    tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
                    attention = Some(fallback_attention.to_string());
119
120
121
122
123
124
125
                }
                if prefix_caching.is_none() {
                    prefix_caching = Some("0".to_string());
                }
            }
        }
    }
126

127
    let attention = attention.unwrap_or("flashinfer".to_string());
128
129
    let prefix_caching = prefix_caching.unwrap_or("true".to_string());

130
131
132
    (prefix_caching, attention)
}

133
#[derive(Deserialize)]
134
struct RawConfig {
135
    max_position_embeddings: Option<usize>,
136
    n_positions: Option<usize>,
137
    model_type: Option<String>,
138
    max_seq_len: Option<usize>,
139
    quantization_config: Option<QuantizationConfig>,
140
141
142
143
144
145
    n_embd: Option<usize>,
    hidden_size: Option<usize>,
    num_attention_heads: Option<usize>,
    head_dim: Option<usize>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: Option<bool>,
146
147
148
149
150
}

#[derive(Deserialize)]
struct QuantizationConfig {
    quant_method: Option<Quantization>,
151
152
}

153
154
155
#[derive(Deserialize)]
struct VisionConfig {}

156
157
158
#[derive(Deserialize)]
struct Config {
    max_position_embeddings: Option<usize>,
159
    quantize: Option<Quantization>,
160
161
162
163
    head_dim: Option<usize>,
    model_type: Option<String>,
    vision_config: Option<VisionConfig>,
    is_encoder_decoder: bool,
164
165
166
167
168
169
170
171
}

impl From<RawConfig> for Config {
    fn from(other: RawConfig) -> Self {
        let max_position_embeddings = other
            .max_position_embeddings
            .or(other.max_seq_len)
            .or(other.n_positions);
172
        let quantize = other.quantization_config.and_then(|q| q.quant_method);
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        let head_dim = other.head_dim.or_else(|| {
            match (other.hidden_size, other.n_embd, other.num_attention_heads) {
                (Some(hidden_size), _, Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                // Legacy
                (_, Some(hidden_size), Some(num_attention_heads))
                    if hidden_size % num_attention_heads == 0 =>
                {
                    Some(hidden_size / num_attention_heads)
                }
                _ => None,
            }
        });
        let model_type = other.model_type;
        let vision_config = other.vision_config;
        let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
192
193
        Config {
            max_position_embeddings,
194
            quantize,
195
196
197
198
            head_dim,
            model_type,
            vision_config,
            is_encoder_decoder,
199
200
201
202
        }
    }
}

203
204
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
205
enum Quantization {
206
    /// 4 bit quantization. Requires a specific AWQ quantized model:
207
    ///   <https://hf.co/models?search=awq>.
208
    /// Should replace GPTQ models wherever possible because of the better latency
209
210
211
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
212
    /// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
213
    Eetq,
214
215
216
217
    /// Variable bit quantization. Requires a specific EXL2 quantized model:
    /// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
    /// not support tensor parallelism (num_shard > 1).
    Exl2,
218
    /// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
219
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
220
221
222
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
223
224
    /// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
    Marlin,
225
226
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
227
228
229
230
    // #[deprecated(
    //     since = "1.1.0",
    //     note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    // )]
231
    Bitsandbytes,
232
233
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
234
    BitsandbytesNf4,
235
236
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
237
    BitsandbytesFp4,
Nicolas Patry's avatar
Nicolas Patry committed
238
239
240
241
242
    /// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
    /// This dtype has native ops should be the fastest if available.
    /// This is currently not the fastest because of local unpacking + padding to satisfy matrix
    /// multiplication limitations.
    Fp8,
243
244
245
246
247
248
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
249
250
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
251
252
253
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
254
            Quantization::BitsandbytesNf4 => {
Nicolas Patry's avatar
Nicolas Patry committed
255
256
                write!(f, "bitsandbytes-nf4")
            }
257
            Quantization::BitsandbytesFp4 => {
Nicolas Patry's avatar
Nicolas Patry committed
258
259
                write!(f, "bitsandbytes-fp4")
            }
260
261
262
            Quantization::Exl2 => {
                write!(f, "exl2")
            }
263
264
265
            Quantization::Gptq => {
                write!(f, "gptq")
            }
266
267
268
            Quantization::Marlin => {
                write!(f, "marlin")
            }
269
270
271
            Quantization::Awq => {
                write!(f, "awq")
            }
272
273
274
            Quantization::Eetq => {
                write!(f, "eetq")
            }
Nicolas Patry's avatar
Nicolas Patry committed
275
276
277
            Quantization::Fp8 => {
                write!(f, "fp8")
            }
278
279
280
281
        }
    }
}

282
283
284
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
285
    #[clap(name = "bfloat16")]
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
    /// Default option, usage statistics are collected anonymously
    On,
    /// Disables all collection of usage statistics
    Off,
    /// Doesn't send the error stack trace or error type, but allows sending a crash event
    NoStack,
}

impl std::fmt::Display for UsageStatsLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            UsageStatsLevel::On => {
                write!(f, "on")
            }
            UsageStatsLevel::Off => {
                write!(f, "off")
            }
            UsageStatsLevel::NoStack => {
                write!(f, "no-stack")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
350
351
352
353
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
354
355
356
357
358
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
359
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
360
    model_id: String,
361
362
363

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
364
    #[clap(long, env)]
365
    revision: Option<String>,
366

367
368
369
370
371
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

372
    /// Whether to shard the model across multiple GPUs
373
374
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
375
376
    #[clap(long, env)]
    sharded: Option<bool>,
377
378

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
379
380
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
381
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
382
383
    #[clap(long, env)]
    num_shard: Option<usize>,
384

385
386
387
388
389
    /// Quantization method to use for the model. It is not necessary to specify this option
    /// for pre-quantized models, since the quantization method is read from the model
    /// configuration.
    ///
    /// Marlin kernels will be used automatically for GPTQ/AWQ models.
390
391
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
392

Nicolas Patry's avatar
Nicolas Patry committed
393
394
395
396
397
398
399
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

400
401
402
403
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

404
405
406
407
408
409
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

410
411
412
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
413
414
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
415
416
417
418

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
419
420
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
421
422
423
424
425
426

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
427
428
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
429

Nicolas Patry's avatar
Nicolas Patry committed
430
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
431
    /// `top_n_tokens` is used to return information about the the `n` most likely
Nicolas Patry's avatar
Nicolas Patry committed
432
433
434
435
436
437
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

438
439
440
441
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
442
443
444
445
446
447
448
    /// Default to min(max_position_embeddings - 1, 4095)
    #[clap(long, env)]
    max_input_tokens: Option<usize>,

    /// Legacy version of [`Args::max_input_tokens`].
    #[clap(long, env)]
    max_input_length: Option<usize>,
449
450
451
452
453
454
455
456
457

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
458
459
460
    /// Default to min(max_position_embeddings, 4096)
    #[clap(long, env)]
    max_total_tokens: Option<usize>,
461
462
463
464
465
466
467
468
469
470
471

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
472
    #[clap(default_value = "0.3", long, env)]
473
    waiting_served_ratio: f32,
474

475
476
477
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
478
479
480
    /// Default to `max_input_tokens + 50` to give a bit of room.
    #[clap(long, env)]
    max_batch_prefill_tokens: Option<u32>,
481

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
499
500
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
519
520
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
521

522
523
524
525
526
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

527
528
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
529
530
531
    /// Default = "1,2,4,8,16,32"
    #[clap(long, env, value_delimiter = ',')]
    cuda_graphs: Option<Vec<usize>>,
532

533
534
535
536
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

537
    /// The port to listen on.
538
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
539
    port: u16,
540
541
542

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
543
544
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
545
546

    /// The address the master shard will listen on. (setting used by torch distributed)
547
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
548
    master_addr: String,
549
550

    /// The address the master port will listen on. (setting used by torch distributed)
551
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
552
    master_port: usize,
553
554
555

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
556
    #[clap(long, env)]
557
    huggingface_hub_cache: Option<String>,
558
559
560

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
561
562
    #[clap(long, env)]
    weights_cache_override: Option<String>,
563
564
565
566
567

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
568
    #[clap(long, env)]
569
    disable_custom_kernels: bool,
570

571
572
573
574
575
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

596
    /// Outputs the logs in JSON format (useful for telemetry)
597
    #[clap(long, env)]
598
    json_output: bool,
599

600
601
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
602

603
604
605
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,

606
607
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
608
609
610
611

    #[clap(long, env)]
    api_key: Option<String>,

612
613
614
615
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
616

617
618
619
620
621
622
623
624
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

625
    /// ngrok edge
626
    #[clap(long, env)]
627
    ngrok_edge: Option<String>,
628

629
630
631
632
633
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
634
635
636
637
638
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

639
640
641
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
642
643
644
645

    /// Control the maximum number of inputs that a client can send in a single request
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
drbh's avatar
drbh committed
646
647
648
649
650

    /// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
    /// startup that will be available to callers via the `adapter_id` field in a request.
    #[clap(long, env)]
    lora_adapters: Option<String>,
651

652
653
654
655
656
    /// Control if anonymous usage stats are collected.
    /// Options are "on", "off" and "no-stack"
    /// Defaul is on.
    #[clap(default_value = "on", long, env)]
    usage_stats: UsageStatsLevel,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
657
658
}

659
660
661
#[derive(Debug)]
enum ShardStatus {
    Ready,
662
    Failed(usize),
663
}
664

665
666
667
668
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
669
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
670
    speculate: Option<usize>,
671
    dtype: Option<Dtype>,
672
    trust_remote_code: bool,
673
674
675
676
677
678
679
680
681
682
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
683
    cuda_graphs: Vec<usize>,
684
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
685
686
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
687
688
    max_total_tokens: usize,
    max_batch_size: Option<usize>,
689
    max_input_tokens: usize,
drbh's avatar
drbh committed
690
    lora_adapters: Option<String>,
691
    otlp_endpoint: Option<String>,
692
    otlp_service_name: String,
693
    log_level: LevelFilter,
694
    status_sender: mpsc::Sender<ShardStatus>,
695
    shutdown: Arc<AtomicBool>,
696
697
    _shutdown_sender: mpsc::Sender<()>,
) {
698
699
700
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

701
702
703
704
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
705
706
707
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
708
709

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
710
    let mut shard_args = vec![
711
712
713
714
715
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
716
        log_level.to_string().to_uppercase(),
717
718
719
        "--json-output".to_string(),
    ];

720
721
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
722
        shard_args.push("--trust-remote-code".to_string());
723
724
    }

725
726
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
727
        shard_args.push("--sharded".to_string());
728
729
    }

730
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
731
732
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
733
    }
734

Nicolas Patry's avatar
Nicolas Patry committed
735
736
737
738
739
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

740
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
741
742
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
743
744
    }

745
746
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
747
748
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
749
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
750

Nicolas Patry's avatar
Nicolas Patry committed
751
752
753
754
755
756
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
757

758
    // OpenTelemetry Endpoint
759
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
760
761
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
762
763
    }

764
765
766
767
    // OpenTelemetry Service Name
    shard_args.push("--otlp-service-name".to_string());
    shard_args.push(otlp_service_name);

768
769
770
771
    // In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
    shard_args.push("--max-input-tokens".to_string());
    shard_args.push(max_input_tokens.to_string());

772
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
773
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
774

775
776
777
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

778
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
779
780
781
782
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
783
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
784

785
786
787
788
789
790
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

791
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
792
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
793

794
795
796
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

797
798
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
799
    envs.push((
800
801
802
803
804
805
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
806
        envs.push(("HF_TOKEN".into(), api_token.into()))
807
808
    };

Nicolas Patry's avatar
Nicolas Patry committed
809
810
811
812
813
814
815
816
817
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

818
819
820
821
822
823
824
825
    envs.push((
        "MAX_TOTAL_TOKENS".into(),
        max_total_tokens.to_string().into(),
    ));
    if let Some(max_batch_size) = max_batch_size {
        envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
    }

drbh's avatar
drbh committed
826
827
828
829
830
    // Lora Adapters
    if let Some(lora_adapters) = lora_adapters {
        envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
    }

831
832
833
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
834
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
835
836
837
838
839
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
840
        envs.push((
841
842
843
844
845
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

846
    // Enable experimental support for cuda graphs
847
848
849
850
851
852
853
854
855
856
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
857
858
    }

859
860
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
861
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
862
863
864
865
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
866
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
867
868
869
870
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
871
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
872
873
874
    }

    // Start process
875
    tracing::info!("Starting shard");
876
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
877
        .args(shard_args)
878
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
879
        .envs(envs)
880
        .stdin(Stdio::piped())
881
882
883
884
885
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
886
887
        Ok(p) => p,
        Err(err) => {
888
889
890
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
891
892
            }
            {
893
                tracing::error!("{}", err);
894
            }
895

896
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
897
898
899
900
901
            return;
        }
    };

    // Redirect STDOUT to the console
902
    let mut pstdin = p.stdin.take().unwrap();
903
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
904
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
905

906
    //stdout tracing thread
907
    thread::spawn(move || {
908
        log_lines(shard_stdout_reader);
909
    });
910
911
912
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
913
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
914
915
916
            err_sender.send(line).unwrap_or(());
        }
    });
917
918
919
920
921
922
923
924
925
926
927
928
    // We read stdin in another thread as it seems that lines() can block in some cases
    thread::spawn(move || {
        let mut stdin = io::stdin(); // We get `Stdin` here.
        loop {
            let mut buffer = vec![0; 4096];
            if let Ok(n) = stdin.read(&mut buffer) {
                if n > 0 {
                    let _ = pstdin.write_all(&buffer[..n]);
                }
            }
        }
    });
929
930
931
932
933
934

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
935
        if let Some(exit_status) = p.try_wait().unwrap() {
936
937
938
939
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
940

941
            tracing::error!("Shard complete standard error output:\n{err}");
942

943
            if let Some(signal) = exit_status.signal() {
944
945
946
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

947
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
948
949
950
951
            return;
        }

        // We received a shutdown signal
952
        if shutdown.load(Ordering::SeqCst) {
953
            terminate("shard", p, Duration::from_secs(90)).unwrap();
954
955
956
957
958
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
959
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
960
961
962
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
963
            tracing::info!("Waiting for shard to be ready...");
964
965
966
967
968
969
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

970
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
971
972
973
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
974
    shutdown.store(true, Ordering::SeqCst);
975
976
977
978
979
980
981

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
982
983
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
984
985
986
        Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
            Ok(devices) => devices,
            Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
Nicolas Patry's avatar
Nicolas Patry committed
987
        },
988
    };
989
990
    let n_devices = devices.split(',').count();
    Some(n_devices)
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
1024
1025
1026
1027
1028
1029
1030
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
1031
1032
1033
1034
        }
    }
}

1035
impl TryFrom<&[u8]> for PythonLogMessage {
1036
1037
    type Error = serde_json::Error;

1038
1039
    fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
        serde_json::from_slice::<Self>(value)
1040
1041
1042
    }
}

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
    let mut buffer = vec![0u8; 8 * 4096];
    let mut stdout = std::io::stdout();
    loop {
        let n = bufread.read(&mut buffer);
        if let Ok(n) = n {
            if n > 0 {
                let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
                while let Some(line) = lines.next() {
                    match PythonLogMessage::try_from(line) {
                        Ok(log) => log.trace(),
                        // For interactive debugging ?
                        Err(_) => {
1056
1057
1058
1059
1060
1061
                            if LevelFilter::current() >= tracing::Level::DEBUG {
                                stdout.write_all(line).unwrap();
                                if lines.peek().is_some() {
                                    stdout.write_all(b"\n").unwrap();
                                }
                                stdout.flush().unwrap();
1062
1063
1064
1065
1066
                            }
                        }
                    }
                }
            }
1067
1068
1069
1070
        }
    }
}

1071
1072
1073
1074
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
1075
1076
1077
1078
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
1079
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
1080
            let n_devices = num_cuda_devices()
1081
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
1082
            if n_devices <= 1 {
1083
1084
1085
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
1086
            }
1087
            n_devices
1088
        }
1089
1090
1091
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
1092
1093
1094
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
1095
1096
            }
            num_shard
1097
        }
1098
1099
1100
1101
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
1102
    };
1103
    if num_shard < 1 {
1104
1105
1106
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
1107
    }
1108
    Ok(num_shard)
1109
}
1110

1111
#[derive(Debug, Error)]
1112
enum LauncherError {
1113
    #[error("Invalid argument: {0}")]
1114
    ArgumentValidation(String),
1115
    #[error("not enough cuda devices: {0}")]
1116
    NotEnoughCUDADevices(String),
1117
    #[error("Download error")]
1118
    DownloadError,
1119
    #[error("Shard cannot start")]
1120
    ShardCannotStart,
1121
    #[error("Shard disconnected")]
1122
    ShardDisconnected,
1123
    #[error("Shard failed")]
1124
    ShardFailed,
1125
    #[error("Webserver failed")]
1126
    WebserverFailed,
1127
    #[error("Webserver cannot start")]
1128
1129
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1130

1131
1132
1133
1134
1135
1136
1137
1138
fn download_convert_model(
    model_id: &str,
    revision: Option<&str>,
    trust_remote_code: bool,
    huggingface_hub_cache: Option<&str>,
    weights_cache_override: Option<&str>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
1139
1140
1141
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
1142
    let mut download_args = vec![
1143
        "download-weights".to_string(),
1144
        model_id.to_string(),
1145
1146
1147
1148
1149
1150
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
1151

1152
    // Model optional revision
1153
    if let Some(revision) = &revision {
OlivierDehaene's avatar
OlivierDehaene committed
1154
1155
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
1156
    }
1157

1158
    // Trust remote code for automatic peft fusion
1159
    if trust_remote_code {
1160
1161
1162
        download_args.push("--trust-remote-code".to_string());
    }

1163
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1164
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1165

1166
1167
1168
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

1169
1170
1171
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

1172
    // If huggingface_hub_cache is set, pass it to the download process
1173
    // Useful when running inside a docker container
1174
    if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
1175
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
1176
    };
1177

1178
1179
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
1180
    envs.push((
1181
1182
1183
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
1184

1185
1186
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1187
        envs.push(("HF_TOKEN".into(), api_token.into()))
1188
    };
1189

1190
1191
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
1192
    if let Some(weights_cache_override) = &weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
1193
        envs.push((
1194
1195
1196
1197
1198
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

1199
    // Start process
1200
    tracing::info!("Starting check and download process for {model_id}");
1201
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
1202
        .args(download_args)
1203
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
1204
        .envs(envs)
1205
1206
1207
1208
1209
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
1210
1211
        Ok(p) => p,
        Err(err) => {
1212
1213
1214
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
1215
1216
            } else {
                tracing::error!("{}", err);
1217
            }
1218

1219
1220
1221
            return Err(LauncherError::DownloadError);
        }
    };
1222

1223
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
1224

1225
    thread::spawn(move || {
1226
        log_lines(download_stdout);
1227
1228
1229
1230
1231
1232
1233
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
1234
        for line in download_stderr.lines().map_while(Result::ok) {
1235
1236
            err_sender.send(line).unwrap_or(());
        }
1237
    });
1238

1239
    loop {
1240
1241
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
1242
                tracing::info!("Successfully downloaded weights for {model_id}");
1243
                break;
1244
            }
1245
1246

            let mut err = String::new();
1247
1248
1249
1250
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

1251
1252
1253
1254
1255
1256
1257
1258
1259
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
1260
        }
1261
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
1262
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
1263
1264
1265
            return Ok(());
        }
        sleep(Duration::from_millis(100));
1266
    }
1267
1268
    Ok(())
}
1269

1270
#[allow(clippy::too_many_arguments)]
1271
1272
1273
fn spawn_shards(
    num_shard: usize,
    args: &Args,
1274
    cuda_graphs: Vec<usize>,
1275
    max_total_tokens: usize,
1276
    max_input_tokens: usize,
1277
    quantize: Option<Quantization>,
1278
    max_log_level: LevelFilter,
1279
    shutdown: Arc<AtomicBool>,
1280
1281
1282
1283
1284
1285
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1286
1287
    // Start shard processes
    for rank in 0..num_shard {
1288
1289
1290
1291
1292
1293
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1294
1295
1296
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
1297
        let otlp_endpoint = args.otlp_endpoint.clone();
1298
        let otlp_service_name = args.otlp_service_name.clone();
Nicolas Patry's avatar
Nicolas Patry committed
1299
        let speculate = args.speculate;
1300
        let dtype = args.dtype;
1301
        let trust_remote_code = args.trust_remote_code;
1302
1303
1304
1305
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
1306
        let cuda_graphs_clone = cuda_graphs.clone();
1307
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
1308
1309
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
1310
        let max_batch_size = args.max_batch_size;
drbh's avatar
drbh committed
1311
        let lora_adapters = args.lora_adapters.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1312
1313
        thread::spawn(move || {
            shard_manager(
1314
                model_id,
1315
                revision,
1316
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1317
                speculate,
1318
                dtype,
1319
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1320
1321
1322
1323
1324
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
1325
1326
                huggingface_hub_cache,
                weights_cache_override,
1327
                disable_custom_kernels,
1328
1329
                watermark_gamma,
                watermark_delta,
1330
                cuda_graphs_clone,
1331
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
1332
1333
                rope_scaling,
                rope_factor,
1334
1335
                max_total_tokens,
                max_batch_size,
1336
                max_input_tokens,
drbh's avatar
drbh committed
1337
                lora_adapters,
1338
                otlp_endpoint,
1339
                otlp_service_name,
1340
                max_log_level,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1362
            Ok(ShardStatus::Failed(rank)) => {
1363
                tracing::error!("Shard {rank} failed to start");
1364
                shutdown_shards(shutdown, shutdown_receiver);
1365
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1366
1367
1368
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1369
                shutdown_shards(shutdown, shutdown_receiver);
1370
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1371
1372
1373
            }
        }
    }
1374
1375
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1376

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1389
fn spawn_webserver(
1390
    num_shard: usize,
1391
    args: Args,
1392
1393
1394
    max_input_tokens: usize,
    max_total_tokens: usize,
    max_batch_prefill_tokens: u32,
1395
    shutdown: Arc<AtomicBool>,
1396
    shutdown_receiver: &mpsc::Receiver<()>,
1397
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1398
1399
1400
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1401
    let mut router_args = vec![
1402
1403
        "--max-client-batch-size".to_string(),
        args.max_client_batch_size.to_string(),
1404
        "--max-concurrent-requests".to_string(),
1405
        args.max_concurrent_requests.to_string(),
1406
        "--max-best-of".to_string(),
1407
        args.max_best_of.to_string(),
1408
        "--max-stop-sequences".to_string(),
1409
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1410
1411
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1412
1413
        "--max-input-tokens".to_string(),
        max_input_tokens.to_string(),
1414
        "--max-total-tokens".to_string(),
1415
        max_total_tokens.to_string(),
1416
        "--max-batch-prefill-tokens".to_string(),
1417
        max_batch_prefill_tokens.to_string(),
1418
        "--waiting-served-ratio".to_string(),
1419
        args.waiting_served_ratio.to_string(),
1420
        "--max-waiting-tokens".to_string(),
1421
        args.max_waiting_tokens.to_string(),
1422
1423
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1424
1425
        "--hostname".to_string(),
        args.hostname.to_string(),
1426
        "--port".to_string(),
1427
        args.port.to_string(),
1428
        "--master-shard-uds-path".to_string(),
1429
        format!("{}-0", args.shard_uds_path),
1430
        "--tokenizer-name".to_string(),
1431
        args.model_id,
1432
1433
    ];

1434
    // Pass usage stats flags to router
1435
1436
    router_args.push("--usage-stats".to_string());
    router_args.push(args.usage_stats.to_string());
1437

drbh's avatar
drbh committed
1438
1439
1440
1441
1442
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1443
1444
1445
1446
1447
1448
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1449
1450
1451
1452
1453
1454
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1455
1456
1457
1458
1459
1460
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1461
1462
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1463
1464
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1465
1466
    }

1467
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1468
        router_args.push("--json-output".to_string());
1469
1470
    }

1471
    // OpenTelemetry
1472
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1473
1474
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1475
1476
    }

1477
1478
1479
1480
1481
    // OpenTelemetry
    let otlp_service_name = args.otlp_service_name;
    router_args.push("--otlp-service-name".to_string());
    router_args.push(otlp_service_name);

1482
1483
    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1484
1485
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1486
1487
    }

Erik Kaunismäki's avatar
Erik Kaunismäki committed
1488
1489
1490
1491
1492
    // API Key
    if let Some(api_key) = args.api_key {
        router_args.push("--api-key".to_string());
        router_args.push(api_key);
    }
1493
1494
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1495
1496
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1497
1498
1499
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1500
1501
    }

1502
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1503
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1504

1505
1506
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
1507
        envs.push(("HF_TOKEN".into(), api_token.into()))
1508
    };
1509

1510
1511
1512
1513
1514
1515
1516
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1517
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1518
1519
        .args(router_args)
        .envs(envs)
1520
1521
1522
1523
1524
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1525
1526
        Ok(p) => p,
        Err(err) => {
1527
            tracing::error!("Failed to start webserver: {}", err);
1528
1529
1530
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1531
1532
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1533
            }
1534

1535
            shutdown_shards(shutdown, shutdown_receiver);
1536
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1537
1538
1539
        }
    };

1540
1541
1542
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1543
1544

    thread::spawn(move || {
1545
1546
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1547
        for line in stdout.lines() {
1548
            println!("{}", line.unwrap());
1549
        }
1550
1551
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1552
        }
1553
1554
1555
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1556

OlivierDehaene's avatar
OlivierDehaene committed
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");
    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }
    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1580
1581
fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
1582
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1583

1584
    // Filter events with LOG_LEVEL
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
    let varname = "LOG_LEVEL";
    let env_filter = if let Ok(log_level) = std::env::var(varname) {
        // Override to avoid simple logs to be spammed with tokio level informations
        let log_level = match &log_level[..] {
            "warn" => "text_generation_launcher=warn,text_generation_router=warn",
            "info" => "text_generation_launcher=info,text_generation_router=info",
            "debug" => "text_generation_launcher=debug,text_generation_router=debug",
            log_level => log_level,
        };
        EnvFilter::builder()
            .with_default_directive(LevelFilter::INFO.into())
            .parse_lossy(log_level)
    } else {
        EnvFilter::new("info")
    };
    let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
1601

1602
    if args.json_output {
1603
1604
1605
1606
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1607
    } else {
1608
1609
1610
1611
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1612
1613
    }

1614
1615
1616
1617
1618
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

Nicolas Patry's avatar
Nicolas Patry committed
1619
    tracing::info!("{:#?}", args);
1620

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
    let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
    let quantize = config.as_ref().and_then(|c| c.quantize);
    // Quantization usually means you're even more RAM constrained.
    let max_default = 4096;

    let max_position_embeddings = if let Some(config) = &config {
        if let Some(max_position_embeddings) = config.max_position_embeddings {
            if max_position_embeddings > max_default {
                let max = max_position_embeddings;
                if args.max_input_tokens.is_none()
                    && args.max_total_tokens.is_none()
                    && args.max_batch_prefill_tokens.is_none()
                {
                    tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
1635
                }
1636
                max_default
1637
            } else {
1638
                max_position_embeddings
1639
            }
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
        } else {
            max_default
        }
    } else {
        max_default
    };
    let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
    tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
    std::env::set_var("USE_PREFIX_CACHING", prefix_caching);
    std::env::set_var("ATTENTION", attention);
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

    let max_input_tokens = {
        match (args.max_input_tokens, args.max_input_length) {
            (Some(max_input_tokens), Some(max_input_length)) => {
                return Err(LauncherError::ArgumentValidation(
                    format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
                )));
            }
            (Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
            (None, None) => {
                let value = max_position_embeddings - 1;
                tracing::info!("Default `max_input_tokens` to {value}");
                value
            }
        }
    };
    let max_total_tokens = {
        match args.max_total_tokens {
            Some(max_total_tokens) => max_total_tokens,
            None => {
                let value = max_position_embeddings;
                tracing::info!("Default `max_total_tokens` to {value}");
                value
            }
        }
    };
    let max_batch_prefill_tokens = {
        match args.max_batch_prefill_tokens {
            Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
            None => {
                let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
                    max_batch_size * max_input_tokens
                } else {
                    // Adding some edge in order to account for potential block_size alignement
                    // issue.
                    max_input_tokens + 50
                } as u32;
                tracing::info!("Default `max_batch_prefill_tokens` to {value}");
                value
            }
        }
    };

1693
    // Validate args
1694
    if max_input_tokens >= max_total_tokens {
1695
        return Err(LauncherError::ArgumentValidation(
1696
            "`max_input_tokens must be < `max_total_tokens`".to_string(),
1697
1698
        ));
    }
1699
    if max_input_tokens as u32 > max_batch_prefill_tokens {
1700
        return Err(LauncherError::ArgumentValidation(format!(
1701
1702
            "`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
            max_batch_prefill_tokens, max_input_tokens
1703
1704
        )));
    }
1705

1706
1707
1708
1709
1710
    if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
        tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
    }
    let quantize = args.quantize.or(quantize);
    let cuda_graphs = match (&args.cuda_graphs, &quantize) {
Nicolas Patry's avatar
Nicolas Patry committed
1711
        (Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
1712
1713
1714
1715
1716
        #[allow(deprecated)]
        (
            None,
            Some(
                Quantization::Bitsandbytes
1717
1718
                | Quantization::BitsandbytesNf4
                | Quantization::BitsandbytesFp4,
1719
1720
            ),
        ) => {
1721
1722
1723
1724
1725
            tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
            vec![]
        }
        (None, Some(Quantization::Exl2)) => {
            tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
1726
1727
1728
1729
1730
1731
1732
1733
1734
            vec![]
        }
        _ => {
            let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
            tracing::info!("Using default cuda graphs {cuda_graphs:?}");
            cuda_graphs
        }
    };

1735
1736
1737
1738
1739
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1740
1741
1742
1743
1744
1745
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1746
1747

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1748
    if num_shard > 1 {
1749
1750
1751
1752
1753
        if matches!(args.quantize, Some(Quantization::Exl2)) {
            return Err(LauncherError::ArgumentValidation(
                "Sharding is currently not supported with `exl2` quantization".into(),
            ));
        }
1754
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1755
1756
    }

1757
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
1758
        if max_batch_prefill_tokens > *max_batch_total_tokens {
1759
1760
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1761
                max_batch_prefill_tokens, max_batch_total_tokens
1762
1763
            )));
        }
1764
        if max_total_tokens as u32 > *max_batch_total_tokens {
1765
1766
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
1767
                max_total_tokens, max_batch_total_tokens
1768
1769
1770
1771
            )));
        }
    }

1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1786
1787
1788
1789
1790
1791
1792
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1793

1794
    // Download and convert model weights
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
    download_convert_model(
        &args.model_id,
        args.revision.as_deref(),
        args.trust_remote_code,
        args.huggingface_hub_cache.as_deref(),
        args.weights_cache_override.as_deref(),
        running.clone(),
    )?;

    // Download and convert lora adapters if any
    if let Some(lora_adapters) = &args.lora_adapters {
        for adapter in lora_adapters.split(',') {
1807
1808
1809
1810
            // skip download if a path is provided
            if adapter.contains('=') {
                continue;
            }
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
            download_convert_model(
                adapter,
                None,
                args.trust_remote_code,
                args.huggingface_hub_cache.as_deref(),
                args.weights_cache_override.as_deref(),
                running.clone(),
            )?;
        }
    }
1821

OlivierDehaene's avatar
OlivierDehaene committed
1822
1823
1824
1825
1826
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1827
    // Shared shutdown bool
1828
    let shutdown = Arc::new(AtomicBool::new(false));
1829
1830
1831
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1832

1833
1834
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1835

1836
1837
1838
    spawn_shards(
        num_shard,
        &args,
1839
        cuda_graphs,
1840
        max_total_tokens,
1841
        max_input_tokens,
1842
        quantize,
1843
        max_log_level,
1844
1845
1846
1847
1848
1849
1850
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1851

1852
1853
1854
1855
1856
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1857

1858
1859
1860
1861
1862
1863
1864
1865
1866
    let mut webserver = spawn_webserver(
        num_shard,
        args,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        shutdown.clone(),
        &shutdown_receiver,
    )
1867
    .inspect_err(|_| {
1868
1869
        shutdown_shards(shutdown.clone(), &shutdown_receiver);
    })?;
1870
1871
1872
1873
1874

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1875
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1876
            tracing::error!("Shard {rank} crashed");
1877
1878
1879
1880
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1881
        match webserver.try_wait().unwrap() {
1882
1883
1884
1885
1886
1887
1888
1889
1890
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1891
    }
1892
1893

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1894
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1895
1896
1897
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1898
}