server.rs 72.9 KB
Newer Older
1
/// HTTP Server logic
OlivierDehaene's avatar
OlivierDehaene committed
2
3
4
5
6
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
7
8
9
10
11
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
12
use crate::validation::ValidationError;
13
use crate::{
14
15
16
17
18
    BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters,
    GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig,
    HubTokenizerConfig, Info, Message, MessageChunk, MessageContent, OutputMessage, PrefillToken,
    SimpleToken, StreamDetails, StreamResponse, TextMessage, Token, TokenizeResponse,
    ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
19
20
21
22
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
23
24
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
25
    VertexResponse,
26
};
drbh's avatar
drbh committed
27
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
28
use async_stream::__private::AsyncStream;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use axum::extract::Extension;
30
use axum::http::{HeaderMap, Method, StatusCode};
31
use axum::response::sse::{Event, KeepAlive, Sse};
32
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use axum::routing::{get, post};
34
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
35
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
36
use futures::stream::StreamExt;
37
use futures::stream::{FuturesOrdered, FuturesUnordered};
38
use futures::Stream;
drbh's avatar
drbh committed
39
use futures::TryStreamExt;
Erik Kaunismäki's avatar
Erik Kaunismäki committed
40
use http::header::AUTHORIZATION;
41
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
42
use serde_json::Value;
43
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
44
use std::net::SocketAddr;
45
46
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
OlivierDehaene's avatar
OlivierDehaene committed
47
48
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
Olivier Dehaene's avatar
Olivier Dehaene committed
49
use tokenizers::Tokenizer;
50
use tokio::select;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
51
use tokio::signal;
52
use tokio::sync::oneshot;
Olivier Dehaene's avatar
Olivier Dehaene committed
53
use tokio::time::Instant;
54
use tower_http::cors::{AllowOrigin, CorsLayer};
55
use tracing::{info_span, instrument, Instrument};
56
57
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
58

59
60
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
80
)]
81
#[instrument(skip(infer, req))]
82
async fn compat_generate(
83
    Extension(default_return_full_text): Extension<bool>,
84
    infer: Extension<Infer>,
85
    compute_type: Extension<ComputeType>,
86
    Json(mut req): Json<CompatGenerateRequest>,
87
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
88
89
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
90
        req.parameters.return_full_text = Some(default_return_full_text)
91
92
    }

93
94
    // switch on stream
    if req.stream {
95
        Ok(generate_stream(infer, compute_type, Json(req.into()))
96
97
98
            .await
            .into_response())
    } else {
99
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
100
        // wrap generation inside a Vec to match api-inference
101
        Ok((headers, Json(vec![generation])).into_response())
102
103
104
    }
}

105
106
/// Text Generation Inference endpoint info
#[utoipa::path(
107
108
109
110
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
111
112
)]
#[instrument]
113
114
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
115
116
}

117
#[utoipa::path(
118
119
120
121
122
123
124
125
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
126
127
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
128
/// Health check method
OlivierDehaene's avatar
OlivierDehaene committed
129
130
131
async fn health(
    mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
132
133
134
135
136
137
138
139
140
141
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
142
143
}

144
145
/// Generate tokens
#[utoipa::path(
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
161
)]
162
#[instrument(
163
164
skip_all,
fields(
165
parameters = ? req.parameters,
166
167
168
169
170
171
172
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
173
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
174
async fn generate(
175
    infer: Extension<Infer>,
176
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
177
    Json(req): Json<GenerateRequest>,
178
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
179
    let span = tracing::Span::current();
180
181
182
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

183
pub(crate) async fn generate_internal(
184
185
186
187
188
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
189
    let start_time = Instant::now();
190
    metrics::counter!("tgi_request_count").increment(1);
191

192
193
    // Do not long ultra long inputs, like image payloads.
    tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
194

195
    let compute_characters = req.inputs.chars().count();
196
    let mut add_prompt = None;
197
198
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
199
200
    }

Nicolas Patry's avatar
Nicolas Patry committed
201
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
202
203

    // Inference
204
    let (response, best_of_responses) = match req.parameters.best_of {
205
        Some(best_of) if best_of > 1 => {
206
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
207
208
            (response, Some(best_of_responses))
        }
209
        _ => (infer.generate(req).await?, None),
210
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
211

OlivierDehaene's avatar
OlivierDehaene committed
212
    // Token details
213
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
214
    let details = match details {
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
229
                            finish_reason: response.generated_text.finish_reason,
230
231
232
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
233
                            top_tokens: response.top_tokens,
234
235
236
237
238
239
240
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
OlivierDehaene's avatar
OlivierDehaene committed
241
                finish_reason: response.generated_text.finish_reason,
242
243
244
245
246
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
247
                top_tokens: response.top_tokens,
248
249
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
250
251
252
        false => None,
    };

253
254
255
256
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
257
258
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
259

260
261
262
263
264
265
266
267
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

268
269
    // Headers
    let mut headers = HeaderMap::new();
270
    headers.insert("x-compute-type", compute_type.parse().unwrap());
271
272
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
273
        total_time.as_secs_f64().to_string().parse().unwrap(),
274
275
276
277
278
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
279
280
281
282
283
284
285
286
287
288
289
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
290
    );
291
292
293
294
295
296
297
298
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
299
300
301
302
303
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
304

305
    // Metrics
306
307
308
309
310
311
312
313
314
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
315

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
316
    // Send response
317
318
319
320
321
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

322
323
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
324

325
    let response = GenerateResponse {
326
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
327
        details,
328
    };
329
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
330
331
}

Yannic Kilcher's avatar
Yannic Kilcher committed
332
/// Generate a stream of token using Server-Sent Events
333
#[utoipa::path(
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
354
)]
355
#[instrument(
356
357
skip_all,
fields(
358
parameters = ? req.parameters,
359
360
361
362
363
364
365
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
366
367
)]
async fn generate_stream(
368
    Extension(infer): Extension<Infer>,
369
    Extension(compute_type): Extension<ComputeType>,
370
    Json(req): Json<GenerateRequest>,
371
372
373
374
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
375
    let span = tracing::Span::current();
376
377
378
379
380
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
381
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
382
383
384
385
386
387
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
388
    ComputeType(compute_type): ComputeType,
389
390
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
391
    span: tracing::Span,
392
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
393
    let start_time = Instant::now();
394
    metrics::counter!("tgi_request_count").increment(1);
395

396
    tracing::debug!("Input: {}", req.inputs);
397

398
    let compute_characters = req.inputs.chars().count();
399
400

    let mut headers = HeaderMap::new();
401
    headers.insert("x-compute-type", compute_type.parse().unwrap());
402
403
404
405
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
406
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
407

408
409
410
411
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
412
413

        let mut add_prompt = None;
414
415
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
416
        }
417
        let details = req.parameters.details;
418

419
        let best_of = req.parameters.best_of.unwrap_or(1);
420
421
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
422
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
423
424
            tracing::error!("{err}");
            yield Ok(Event::from(err));
425
        } else if req.parameters.decoder_input_details {
426
            let err = InferError::from(ValidationError::PrefillDetailsStream);
427
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
428
429
430
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
431
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
432
                // Keep permit as long as generate_stream lives
433
                Ok((_permit, _input_length, mut response_stream)) => {
434
                    let mut index = 0;
435
436
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
437
                        index += 1;
438
439
440
441
442
443
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
444
445
446
447
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
448
449
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

450
451
                                        // StreamResponse
                                        let stream_token = StreamResponse {
452
                                            index,
453
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
454
                                            top_tokens,
455
456
457
                                            generated_text: None,
                                            details: None,
                                        };
458
459
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
460
                                    }
461
462
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
463
                                        token,
464
465
466
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
467
                                        top_tokens,
468
469
470
471
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
OlivierDehaene's avatar
OlivierDehaene committed
472
                                                finish_reason: generated_text.finish_reason,
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
495
496
497
498
499
500
501
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
502
503
504
505
506
507
508
509
510

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

511
512
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
513

514
                                        let stream_token = StreamResponse {
515
                                            index,
516
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
517
                                            top_tokens,
518
519
520
521
                                            generated_text: Some(output_text),
                                            details
                                        };

522
523
524

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
525
526
                                        break;
                                    }
527
528
                                }
                            }
529
530
531
532
533
534
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
535
536
                        }
                    }
537
538
539
540
541
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
542
                }
543
544
545
546
547
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
548
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
549
                tracing::error!("{err}");
550
                yield Ok(Event::from(err));
551
552
553
554
            }
        }
    };

555
556
557
    (headers, stream)
}

558
559
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
560
561
562
563
564
565
566
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
567
568
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
OlivierDehaene's avatar
OlivierDehaene committed
569
570
571
572
573
574
575
576
577
578
579
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
580
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
581
582
583
584
585
586
587
588
589
590
591
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
592
593
594
595
596
597
async fn completions(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
598
    let span = tracing::Span::current();
599
    metrics::counter!("tgi_request_count").increment(1);
600

601
    let CompletionRequest {
602
        model,
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
618
619
620

    // if suffix is present throw an error
    if req.suffix.is_some() {
621
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
622
623
624
625
626
627
628
629
630
631
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

632
    if req.prompt.0.len() > info.max_client_batch_size {
633
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
648
        .0
649
650
651
652
653
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
            parameters: GenerateParameters {
                best_of: None,
654
                temperature,
655
656
657
658
659
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
660
                do_sample,
661
662
                max_new_tokens,
                return_full_text: None,
663
                stop: stop.clone(),
664
665
666
667
668
669
670
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
671
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
672
673
674
675
676
677
678
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;
679
680

    if stream {
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let on_message_callback = move |stream_token: StreamResponse| {
                    let event = Event::default();

                    let current_time = std::time::SystemTime::now()
                        .duration_since(std::time::UNIX_EPOCH)
                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                        .as_secs();

                    event
701
                        .json_data(Completion::Chunk(Chunk {
702
703
704
705
706
707
708
709
710
711
712
713
                            id: "".to_string(),
                            created: current_time,

                            choices: vec![CompletionComplete {
                                finish_reason: "".to_string(),
                                index: index as u32,
                                logprobs: None,
                                text: stream_token.token.text,
                            }],

                            model: model_id.clone(),
                            system_fingerprint: system_fingerprint.clone(),
714
                        }))
715
                        .unwrap_or_else(|_e| Event::default())
716
717
718
719
720
721
722
723
724
725
726
727
728
729
                };

                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
                    let (header_map, sse) = generate_stream_internal(
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        on_message_callback,
                        span_clone.clone(),
                    )
                    .await;
730

731
732
                    // send and dont wait for response
                    let _ = header_tx.send(header_map);
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
                    // pin an emit messages to the sse_tx
                    let mut sse = Box::pin(sse);
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
763
                )
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }
782

783
784
785
786
787
788
789
790
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

816
817
818
819
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

820
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
821
822
823
824
825
826
827
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
                    finish_reason: details.finish_reason.to_string(),
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;
930

931
        let response = Completion::Final(CompletionFinal {
932
933
934
935
936
937
938
939
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
940
            choices,
941
            usage: Usage {
942
943
944
                prompt_tokens,
                completion_tokens,
                total_tokens,
945
            },
946
        });
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
964
965
966
967
        Ok((headers, Json(response)).into_response())
    }
}

968
969
/// Generate tokens
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
990
#[instrument(
OlivierDehaene's avatar
OlivierDehaene committed
991
992
993
994
995
996
997
998
999
1000
1001
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
1002
1003
async fn chat_completions(
    Extension(infer): Extension<Infer>,
1004
    Extension(compute_type): Extension<ComputeType>,
1005
1006
1007
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1008
    let span = tracing::Span::current();
1009
    metrics::counter!("tgi_request_count").increment(1);
1010
    let ChatRequest {
1011
        model,
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
        logprobs,
        max_tokens,
        messages,
        presence_penalty,
        seed,
        stop,
        stream,
        tools,
        tool_choice,
        tool_prompt,
1022
        temperature,
drbh's avatar
drbh committed
1023
        response_format,
1024
1025
1026
1027
1028
1029
1030
1031
        ..
    } = req;

    let repetition_penalty = presence_penalty.map(|x| x + 2.0);
    let max_new_tokens = max_tokens.or(Some(100));
    let logprobs = logprobs.unwrap_or(false);
    let tool_prompt = tool_prompt.unwrap_or_default();
    let stop = stop.unwrap_or_default();
1032
1033
1034
1035
1036
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };
1037

drbh's avatar
drbh committed
1038
1039
    // response_format and tools are mutually exclusive
    if response_format.is_some() && tools.as_ref().is_some() {
1040
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
drbh's avatar
drbh committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Grammar and tools are mutually exclusive".to_string(),
                error_type: "grammar and tools".to_string(),
            }),
        ));
    }

1050
1051
1052
    // extract tool grammar if present
    let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
        Ok(grammar) => grammar,
1053
        Err(err) => {
1054
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
1066
1067
    // determine the appropriate arguments for apply_chat_template
    let tools_grammar_prompt = tool_grammar
1068
1069
        .as_ref()
        .map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
drbh's avatar
drbh committed
1070

drbh's avatar
drbh committed
1071
1072
1073
1074
1075
1076
1077
    let (tools_grammar_prompt, grammar) = match response_format {
        Some(response_format) => (None, Some(response_format)),
        None => (
            tools_grammar_prompt.clone(),
            tools_grammar_prompt.map(|(grammar, _)| grammar.clone()),
        ),
    };
drbh's avatar
drbh committed
1078

1079
    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
1080
    let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
1081
1082
        Ok(inputs) => inputs,
        Err(err) => {
1083
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
1084
1085
            tracing::error!("{err}");
            return Err((
drbh's avatar
drbh committed
1086
1087
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
1088
1089
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
drbh's avatar
drbh committed
1090
                }),
1091
1092
            ));
        }
drbh's avatar
drbh committed
1093
1094
    };

1095
1096
1097
1098
1099
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
1100
            temperature,
1101
            repetition_penalty,
1102
            frequency_penalty: req.frequency_penalty,
1103
            top_k: None,
1104
            top_p: req.top_p,
1105
            typical_p: None,
1106
            do_sample,
1107
1108
            max_new_tokens,
            return_full_text: None,
1109
            stop,
1110
1111
1112
            truncate: None,
            watermark: false,
            details: true,
1113
            decoder_input_details: !stream,
1114
            seed,
1115
            top_n_tokens: req.top_logprobs,
drbh's avatar
drbh committed
1116
            grammar,
1117
            adapter_id: model.filter(|m| *m != "tgi").map(String::from),
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

1136
1137
1138
1139
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
1140
1141
1142
1143
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
1144
1145
1146
1147
1148
1149
1150
                let content = if !stream_token.token.special {
                    Some(stream_token.token.text)
                } else {
                    None
                };

                (content, None)
drbh's avatar
drbh committed
1151
1152
            };

1153
            event
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
                .json_data(CompletionType::ChatCompletionChunk(
                    ChatCompletionChunk::new(
                        model_id.clone(),
                        system_fingerprint.clone(),
                        content,
                        tool_calls,
                        current_time,
                        logprobs,
                        stream_token.details.map(|d| d.finish_reason.to_string()),
                    ),
1164
                ))
1165
1166
1167
1168
                .unwrap_or_else(|e| {
                    println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                    Event::default()
                })
1169
1170
        };

1171
1172
1173
1174
1175
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
1176
            span,
1177
1178
        )
        .await;
1179
1180
1181
1182
1183

        let response_stream = response_stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

1184
1185
1186
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
1187
1188
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
1189
1190
1191
1192
1193
1194

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
1195
        let (tool_calls, output) = if tool_grammar.is_some() {
drbh's avatar
drbh committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
            let gen_text_value: Value = serde_json::from_str(&generation.generated_text)
                .map_err(|e| InferError::ToolError(e.to_string()))?;

            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }

1216
            let tool_calls = vec![ToolCall {
1217
                id: "0".to_string(),
drbh's avatar
drbh committed
1218
1219
1220
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
drbh's avatar
drbh committed
1221
1222
                    name,
                    arguments,
drbh's avatar
drbh committed
1223
                },
1224
1225
            }];
            (Some(tool_calls), None)
drbh's avatar
drbh committed
1226
1227
1228
        } else {
            (None, Some(generation.generated_text))
        };
1229
        // build the complete response object with the full text
1230
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
1231
1232
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
1233
            output,
1234
1235
1236
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
1237
            tool_calls,
1238
        ));
1239
1240
1241
1242

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
1243
1244
}

drbh's avatar
drbh committed
1245
1246
/// Generate tokens from Vertex request
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
drbh's avatar
drbh committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
1279
    let span = tracing::Span::current();
1280
    metrics::counter!("tgi_request_count").increment(1);
drbh's avatar
drbh committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
1311
                generate_internal(
drbh's avatar
drbh committed
1312
                    Extension(infer.clone()),
1313
                    compute_type.clone(),
drbh's avatar
drbh committed
1314
                    Json(generate_request),
1315
                    span.clone(),
drbh's avatar
drbh committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

1338
1339
/// Tokenize inputs
#[utoipa::path(
OlivierDehaene's avatar
OlivierDehaene committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
1350
1351
1352
1353
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
1354
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
1355
1356
1357
1358
1359
1360
1361
1362
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
1363
1364
                let text: String =
                    String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
1365
1366
1367
1368
1369
1370
1371
1372
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
1373
        Ok(Json(TokenizeResponse(tokens)))
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

1385
1386
/// Prometheus metrics scrape endpoint
#[utoipa::path(
1387
1388
1389
1390
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
1391
1392
1393
1394
1395
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

1396
1397
1398
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1399
1400
1401
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
OlivierDehaene's avatar
OlivierDehaene committed
1402
    master_shard_uds_path: String,
1403
    model_info: HubModelInfo,
1404
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1405
    max_concurrent_requests: usize,
1406
    max_best_of: usize,
1407
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
1408
    max_top_n_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1409
    max_input_tokens: usize,
1410
    max_total_tokens: usize,
1411
    waiting_served_ratio: f32,
1412
    max_batch_prefill_tokens: u32,
OlivierDehaene's avatar
OlivierDehaene committed
1413
    max_batch_total_tokens: Option<u32>,
1414
    max_waiting_tokens: usize,
1415
    max_batch_size: Option<usize>,
1416
    tokenizer: Option<Tokenizer>,
1417
    config: Option<Config>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1418
1419
    validation_workers: usize,
    addr: SocketAddr,
1420
    allow_origin: Option<AllowOrigin>,
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1421
    api_key: Option<String>,
1422
    ngrok: bool,
1423
1424
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
1425
    tokenizer_config: HubTokenizerConfig,
1426
    preprocessor_config: Option<HubPreprocessorConfig>,
drbh's avatar
drbh committed
1427
    processor_config: HubProcessorConfig,
1428
    messages_api_enabled: bool,
drbh's avatar
drbh committed
1429
    grammar_support: bool,
1430
    max_client_batch_size: usize,
1431
    print_schema_command: bool,
OlivierDehaene's avatar
OlivierDehaene committed
1432
) -> Result<(), WebServerError> {
1433
1434
1435
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
1436
1437
1438
1439
1440
1441
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
1442
    chat_completions,
1443
    completions,
1444
    tokenize,
1445
1446
1447
1448
1449
1450
1451
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1452
    GrammarType,
1453
1454
    ChatRequest,
    Message,
1455
1456
    MessageContent,
    MessageChunk,
1457
1458
1459
1460
1461
1462
    Url,
    FunctionName,
    OutputMessage,
    TextMessage,
    ToolCallMessage,
    ToolCallDelta,
1463
    ChatCompletionComplete,
1464
1465
1466
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1467
1468
1469
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1470
    ChatCompletion,
1471
1472
    CompletionRequest,
    CompletionComplete,
1473
1474
1475
1476
    Chunk,
    Completion,
    CompletionFinal,
    Prompt,
1477
1478
1479
1480
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1481
1482
    TokenizeResponse,
    SimpleToken,
1483
1484
1485
1486
1487
1488
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1489
    GrammarType,
1490
    Usage,
OlivierDehaene's avatar
OlivierDehaene committed
1491
1492
1493
1494
1495
1496
    DeltaToolCall,
    ToolType,
    Tool,
    ToolCall,
    Function,
    FunctionDefinition,
drbh's avatar
drbh committed
1497
    ToolChoice,
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1510
1511
1512
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1513
    // Create state
1514
1515
1516
1517
1518
1519
    if print_schema_command {
        let api_doc = ApiDoc::openapi();
        let api_doc = serde_json::to_string_pretty(&api_doc).unwrap();
        println!("{}", api_doc);
        std::process::exit(0);
    }
OlivierDehaene's avatar
OlivierDehaene committed
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

    // Open connection, get model info and warmup
    let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
        Arc<dyn Scheduler + Send + Sync>,
        HealthCheck,
        ShardInfo,
        u32,
    ) = {
        // Helper function to check both v2 and v3
        let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
            match max_supported_batch_total_tokens {
                // Older models do not support automatic max-batch-total-tokens
                None => {
                    let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
                        16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
                    );
                    tracing::warn!("Model does not support automatic max batch total tokens");
                    Ok(max_batch_total_tokens)
                }
                // Flash attention models return their max supported total tokens
                Some(max_supported_batch_total_tokens) => {
                    // Warn if user added his own max-batch-total-tokens as we will ignore it
                    if max_batch_total_tokens.is_some() {
                        tracing::warn!(
                            "`--max-batch-total-tokens` is deprecated for Flash \
                        Attention models."
                        );
                        tracing::warn!(
                            "Inferred max batch total tokens: {max_supported_batch_total_tokens}"
                        );
                    }
                    if max_total_tokens as u32 > max_supported_batch_total_tokens {
                        return Err(WebServerError::NotEnoughMemory(max_total_tokens));
                    }

                    Ok(max_supported_batch_total_tokens)
                }
            }
        };

        let generation_health = Arc::new(AtomicBool::new(false));

        match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
            Ok(mut sharded_client) => {
                // server is running on v3
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV3::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V3");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
            Err(_) => {
                let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
                    .await
                    .map_err(WebServerError::Connection)?;

                // server is running on v2
                // Clear the cache; useful if the webserver rebooted
                sharded_client
                    .clear_cache(None)
                    .await
                    .map_err(WebServerError::Cache)?;
                // Get info from the shard
                let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;

                // Warmup model
                tracing::info!("Warming up model");
                let max_batch_total_tokens = check_max_batch_total_tokens(
                    sharded_client
                        .warmup(
                            max_input_tokens as u32,
                            max_batch_prefill_tokens,
                            max_total_tokens as u32,
                            max_batch_size,
                        )
                        .await
                        .map_err(WebServerError::Warmup)?,
                )?;

                let health_ext =
                    HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
                let scheduler = Arc::new(SchedulerV2::new(
                    sharded_client,
                    waiting_served_ratio,
                    max_batch_prefill_tokens,
                    max_batch_total_tokens,
                    max_waiting_tokens,
                    max_batch_size,
                    shard_info.requires_padding,
                    shard_info.window_size,
                    shard_info.speculate,
                    generation_health,
                ));
                tracing::info!("Using scheduler V2");

                (scheduler, health_ext, shard_info, max_batch_total_tokens)
            }
        }
    };
    tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");

1655
1656
1657
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1658
        config,
1659
        preprocessor_config,
1660
        max_best_of,
1661
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1662
        max_top_n_tokens,
OlivierDehaene's avatar
OlivierDehaene committed
1663
        max_input_tokens,
1664
        max_total_tokens,
drbh's avatar
drbh committed
1665
        grammar_support,
1666
    );
OlivierDehaene's avatar
OlivierDehaene committed
1667

1668
    let infer = Infer::new(
OlivierDehaene's avatar
OlivierDehaene committed
1669
        scheduler,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1670
        validation,
1671
        max_concurrent_requests,
1672
        tokenizer_config,
drbh's avatar
drbh committed
1673
        processor_config,
1674
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1675

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
OlivierDehaene's avatar
OlivierDehaene committed
1690
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1704
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1705
1706
1707
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1708

1709
    // Prometheus handler
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1720
1721
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1722
        .unwrap();
1723
1724
1725
1726
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1727
1728
1729
1730
1731
1732
1733
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
OlivierDehaene's avatar
OlivierDehaene committed
1744
        max_input_tokens,
1745
1746
1747
1748
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1749
        max_batch_size,
1750
        validation_workers,
1751
        max_client_batch_size,
1752
        router: env!("CARGO_PKG_NAME"),
1753
1754
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1755
        docker_label: option_env!("DOCKER_LABEL"),
1756
1757
    };

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
        use crate::VertexInstance;

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
1795
                kserve_model_infer,
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }
drbh's avatar
drbh committed
1810

1811
    // Configure Swagger UI
drbh's avatar
drbh committed
1812
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1813
1814

    // Define base and health routes
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1815
    let mut base_routes = Router::new()
1816
        .route("/", post(compat_generate))
Olivier Dehaene's avatar
Olivier Dehaene committed
1817
        .route("/generate", post(generate))
1818
        .route("/generate_stream", post(generate_stream))
1819
        .route("/v1/chat/completions", post(chat_completions))
1820
        .route("/v1/completions", post(completions))
drbh's avatar
drbh committed
1821
        .route("/vertex", post(vertex_compatibility))
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1851
        .route("/health", get(health))
1852
        .route("/ping", get(health))
1853
1854
1855
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1856
    let aws_sagemaker_route = if messages_api_enabled {
1857
1858
1859
1860
1861
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1862
1863
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1864

1865
    // Combine routes and layers
drbh's avatar
drbh committed
1866
    let mut app = Router::new()
1867
1868
        .merge(swagger_ui)
        .merge(base_routes)
Erik Kaunismäki's avatar
Erik Kaunismäki committed
1869
        .merge(info_routes)
drbh's avatar
drbh committed
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

drbh's avatar
drbh committed
1907
1908
    // add layers after routes
    app = app
1909
        .layer(Extension(info))
1910
        .layer(Extension(health_ext.clone()))
1911
1912
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1913
        .layer(Extension(compute_type))
1914
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1915
        .layer(OtelAxumLayer::default())
1916
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1917

OlivierDehaene's avatar
OlivierDehaene committed
1918
1919
    tracing::info!("Connected");

1920
1921
1922
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
1923
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
1938
1939
1940

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
1941
            .with_graceful_shutdown(shutdown_signal())
OlivierDehaene's avatar
OlivierDehaene committed
1942
1943
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
1944
    }
1945
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1946
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1973
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1974
}
1975
1976
1977
1978
1979
1980
1981
1982
1983

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1984
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1985
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1986
1987
1988
1989
1990
1991
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1992
                error_type: err.error_type().to_string(),
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
2003
                error_type: err.error_type().to_string(),
2004
2005
2006
2007
            })
            .unwrap()
    }
}
OlivierDehaene's avatar
OlivierDehaene committed
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Unable to connect to the Python model shards: {0}")]
    Connection(ClientError),
    #[error("Unable to clear the Python model shards cache: {0}")]
    Cache(ClientError),
    #[error("Unable to get the Python model shards info: {0}")]
    Info(ClientError),
    #[error("Unable to warmup the Python model shards: {0}")]
    Warmup(ClientError),
    #[error("Not enough memory to handle `max_total_tokens={0}`")]
    NotEnoughMemory(usize),
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}