server.rs 39.8 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
7
8
9
10
    ChatCompletionLogprobs, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
    FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo,
    HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails,
    StreamResponse, Token, TokenizeResponse, Validation,
11
};
Olivier Dehaene's avatar
Olivier Dehaene committed
12
use axum::extract::Extension;
13
use axum::http::{HeaderMap, Method, StatusCode};
14
use axum::response::sse::{Event, KeepAlive, Sse};
15
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use axum::routing::{get, post};
17
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
18
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
19
use futures::stream::StreamExt;
20
use futures::Stream;
21
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
22
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
23
use std::net::SocketAddr;
24
25
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
26
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
27
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
28
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use tokio::time::Instant;
30
use tower_http::cors::{AllowOrigin, CorsLayer};
31
use tracing::{info_span, instrument, Instrument};
32
33
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
34

35
36
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
56
)]
57
#[instrument(skip(infer, req))]
58
async fn compat_generate(
59
    Extension(default_return_full_text): Extension<bool>,
60
    infer: Extension<Infer>,
61
    compute_type: Extension<ComputeType>,
62
    Json(mut req): Json<CompatGenerateRequest>,
63
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
64
65
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
66
        req.parameters.return_full_text = Some(default_return_full_text)
67
68
    }

69
70
    // switch on stream
    if req.stream {
71
        Ok(generate_stream(infer, compute_type, Json(req.into()))
72
73
74
            .await
            .into_response())
    } else {
75
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
76
        // wrap generation inside a Vec to match api-inference
77
        Ok((headers, Json(vec![generation])).into_response())
78
79
80
    }
}

81
82
/// Text Generation Inference endpoint info
#[utoipa::path(
83
84
85
86
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
87
88
)]
#[instrument]
89
90
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
91
92
}

93
#[utoipa::path(
94
95
96
97
98
99
100
101
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
102
103
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
104
/// Health check method
105
106
107
108
109
110
111
112
113
114
115
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
116
117
}

118
119
/// Generate tokens
#[utoipa::path(
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
135
)]
136
#[instrument(
137
138
skip_all,
fields(
139
parameters = ? req.parameters,
140
141
142
143
144
145
146
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
147
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
148
async fn generate(
149
    infer: Extension<Infer>,
150
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
151
    Json(req): Json<GenerateRequest>,
152
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
153
    let span = tracing::Span::current();
154
    let start_time = Instant::now();
155
    metrics::increment_counter!("tgi_request_count");
156

157
    tracing::debug!("Input: {}", req.inputs);
158

159
    let compute_characters = req.inputs.chars().count();
160
    let mut add_prompt = None;
161
162
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
163
164
    }

Nicolas Patry's avatar
Nicolas Patry committed
165
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
166
167

    // Inference
168
    let (response, best_of_responses) = match req.parameters.best_of {
169
        Some(best_of) if best_of > 1 => {
170
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
171
172
            (response, Some(best_of_responses))
        }
173
        _ => (infer.generate(req).await?, None),
174
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
175

OlivierDehaene's avatar
OlivierDehaene committed
176
    // Token details
177
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
178
    let details = match details {
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
199
                            top_tokens: response.top_tokens,
200
201
202
203
204
205
206
207
208
209
210
211
212
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
213
                top_tokens: response.top_tokens,
214
215
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
216
217
218
        false => None,
    };

219
220
221
222
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
223
224
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
225

226
227
228
229
230
231
232
233
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

234
235
    // Headers
    let mut headers = HeaderMap::new();
236
    headers.insert("x-compute-type", compute_type.parse().unwrap());
237
238
239
240
241
242
243
244
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
245
246
247
248
249
250
251
252
253
254
255
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
256
    );
257
258
259
260
261
262
263
264
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
265
266
267
268
269
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
270

271
272
    // Metrics
    metrics::increment_counter!("tgi_request_success");
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
287
288
289
290
291
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
292
    // Send response
293
294
295
296
297
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

298
299
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
300

301
    let response = GenerateResponse {
302
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
303
        details,
304
    };
305
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
306
307
}

Yannic Kilcher's avatar
Yannic Kilcher committed
308
/// Generate a stream of token using Server-Sent Events
309
#[utoipa::path(
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
330
)]
331
#[instrument(
332
333
skip_all,
fields(
334
parameters = ? req.parameters,
335
336
337
338
339
340
341
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
342
343
)]
async fn generate_stream(
344
    Extension(infer): Extension<Infer>,
345
    Extension(compute_type): Extension<ComputeType>,
346
    Json(req): Json<GenerateRequest>,
347
348
349
350
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
351
352
353
354
355
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
356
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
357
358
359
360
361
362
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
363
    ComputeType(compute_type): ComputeType,
364
365
366
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
367
368
    let span = tracing::Span::current();
    let start_time = Instant::now();
369
    metrics::increment_counter!("tgi_request_count");
370

371
    tracing::debug!("Input: {}", req.inputs);
372

373
    let compute_characters = req.inputs.chars().count();
374
375

    let mut headers = HeaderMap::new();
376
    headers.insert("x-compute-type", compute_type.parse().unwrap());
377
378
379
380
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
381
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
382

383
384
385
386
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
387
388

        let mut add_prompt = None;
389
390
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
391
        }
392
        let details = req.parameters.details;
393

394
        let best_of = req.parameters.best_of.unwrap_or(1);
395
396
397
398
399
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
400
        } else if req.parameters.decoder_input_details {
401
402
403
404
405
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
406
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
407
                // Keep permit as long as generate_stream lives
408
                Ok((_permit, _input_length, mut response_stream)) => {
409
                    let mut index = 0;
410
411
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
412
                        index += 1;
413
414
415
416
417
418
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
419
420
421
422
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
423
424
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

425
426
                                        // StreamResponse
                                        let stream_token = StreamResponse {
427
                                            index,
428
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
429
                                            top_tokens,
430
431
432
                                            generated_text: None,
                                            details: None,
                                        };
433
434
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
435
                                    }
436
437
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
438
                                        token,
439
440
441
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
442
                                        top_tokens,
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
471
472
473
474
475
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
476
477
478
479
480
481
482
483
484
485
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

486
487
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
488

489
                                        let stream_token = StreamResponse {
490
                                            index,
491
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
492
                                            top_tokens,
493
494
495
496
                                            generated_text: Some(output_text),
                                            details
                                        };

497
498
499

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
500
501
                                        break;
                                    }
502
503
                                }
                            }
504
505
506
507
508
509
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
510
511
                        }
                    }
512
513
514
515
516
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
517
                }
518
519
520
521
522
523
524
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
525
                yield Ok(Event::from(err));
526
527
528
529
            }
        }
    };

530
531
532
533
534
535
536
537
538
539
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
540
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
565
    Extension(compute_type): Extension<ComputeType>,
566
567
568
569
570
571
572
573
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
574
575
        .presence_penalty
        // rescale repetition_penalty from (-2.0, 2.0) to (0.0, 4.0)
576
577
578
579
580
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
581
    let inputs = match infer.apply_chat_template(req.messages) {
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
601
            temperature: req.temperature,
602
            repetition_penalty,
603
            frequency_penalty: req.frequency_penalty,
604
            top_k: None,
605
            top_p: req.top_p,
606
607
608
609
610
611
612
613
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
614
            decoder_input_details: !stream,
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
            seed,
            top_n_tokens: None,
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

635
636
637
638
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

639
640
641
642
643
644
645
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
                    stream_token.token.text,
                    current_time,
                    stream_token.index,
646
                    logprobs,
647
648
649
650
651
652
653
654
655
656
657
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

658
659
660
661
662
663
664
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;
665
666
667
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
668
669
670
671
672
673
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;
674
675
676
677
678
679
680
681
682
683

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
684
            generation.generated_text,
685
686
687
688
689
690
691
692
            current_time,
            generation.details.unwrap(),
            logprobs,
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
693
694
}

695
696
697
698
699
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
700
    request_body = GenerateRequest,
701
702
703
704
705
706
707
708
709
710
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
711
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
729
        Ok(Json(TokenizeResponse(tokens)))
730
731
732
733
734
735
736
737
738
739
740
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

741
742
/// Prometheus metrics scrape endpoint
#[utoipa::path(
743
744
745
746
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
747
748
749
750
751
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

752
753
754
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
755
756
757
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
758
759
    model_info: HubModelInfo,
    shard_info: ShardInfo,
760
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
761
    max_concurrent_requests: usize,
762
    max_best_of: usize,
763
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
764
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
765
    max_input_length: usize,
766
    max_total_tokens: usize,
767
    waiting_served_ratio: f32,
768
    max_batch_prefill_tokens: u32,
769
    max_batch_total_tokens: u32,
770
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
771
    client: ShardedClient,
772
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
773
774
    validation_workers: usize,
    addr: SocketAddr,
775
    allow_origin: Option<AllowOrigin>,
776
777
    ngrok: bool,
    ngrok_authtoken: Option<String>,
778
    ngrok_edge: Option<String>,
779
    tokenizer_config: HubTokenizerConfig,
780
    messages_api_enabled: bool,
781
) -> Result<(), axum::BoxError> {
782
783
784
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
785
786
787
788
789
790
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
791
792
    chat_completions,
    tokenize,
793
794
795
796
797
798
799
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
800
801
802
803
804
805
    ChatRequest,
    Message,
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
    ChatCompletion,
806
807
808
809
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
810
811
    TokenizeResponse,
    SimpleToken,
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
830
831
832
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
833
    // Create state
834
835
836
    let validation = Validation::new(
        validation_workers,
        tokenizer,
837
        max_best_of,
838
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
839
        max_top_n_tokens,
840
841
842
        max_input_length,
        max_total_tokens,
    );
843
844
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
845
846
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
847
        validation,
848
        waiting_served_ratio,
849
        max_batch_prefill_tokens,
850
        max_batch_total_tokens,
851
852
        max_waiting_tokens,
        max_concurrent_requests,
853
        shard_info.requires_padding,
854
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
855
        shard_info.speculate,
856
        generation_health,
857
        tokenizer_config,
858
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
888
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
889
890
891
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
892

893
    // Prometheus handler
894
895
896
897
898
899
900
901
902
903
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
904
905
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
906
        .unwrap();
907
908
909
910
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

911
912
913
914
915
916
917
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
936
        docker_label: option_env!("DOCKER_LABEL"),
937
938
    };

939
940
941
942
943
    // Configure Swagger UI
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi());

    // Define base and health routes
    let base_routes = Router::new()
944
        .route("/", post(compat_generate))
945
        .route("/", get(health))
946
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
947
        .route("/generate", post(generate))
948
        .route("/generate_stream", post(generate_stream))
949
        .route("/v1/chat/completions", post(chat_completions))
950
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
951
        .route("/health", get(health))
952
        .route("/ping", get(health))
953
954
955
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
956
    let aws_sagemaker_route = if messages_api_enabled {
957
958
959
960
961
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

962
963
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
964

965
966
967
968
969
    // Combine routes and layers
    let app = Router::new()
        .merge(swagger_ui)
        .merge(base_routes)
        .merge(aws_sagemaker_route)
970
        .layer(Extension(info))
971
        .layer(Extension(health_ext.clone()))
972
973
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
974
        .layer(Extension(compute_type))
975
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
976
        .layer(OtelAxumLayer::default())
977
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
978

979
980
981
982
983
984
985
986
987
988
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

989
990
991
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
992
993
994
995
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
996
997
                .labeled_tunnel()
                .label("edge", edge);
998
999

            let listener = tunnel.listen().await.unwrap();
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1015
1016
1017
1018
1019
1020

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1021
                .await?;
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1038
            .await?;
1039
    }
1040
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1041
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1068
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1069
}
1070

1071
1072
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1073
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1074
1075
1076
1077
1078
1079
1080
1081
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1082
1083
1084
1085
1086
1087
1088
1089
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1090
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1091
1092
1093
1094
1095
1096
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1097
                error_type: err.error_type().to_string(),
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1108
                error_type: err.error_type().to_string(),
1109
1110
1111
1112
            })
            .unwrap()
    }
}