training.py 34.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import forward_backward_no_pipelining
52
from megatron.schedules import forward_backward_pipelining_without_interleaving
53
from megatron.schedules import forward_backward_pipelining_with_interleaving
Mostofa Patwary's avatar
Mostofa Patwary committed
54
from megatron.utils import report_memory
55
56


57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
65
66
67
def pretrain(train_valid_test_dataset_provider, 
             model_provider,
             forward_step_func, 
             extra_args_provider=None, 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
82
83
84
85
86
87
88
89
90
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
91
92
    """

93
    # Initalize and get arguments, timers, and Tensorboard writer.
94
95
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
96

97
98
99
100
101
102
103
104
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
105
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
106
107
108
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

109
    args = get_args()
Mohammad's avatar
Mohammad committed
110
    timers = get_timers()
111
112

    # Model, optimizer, and learning rate.
113
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
114
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
115
    timers('model-and-optimizer-setup').stop()
116
117
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
118
119

    # Data stuff.
120
121
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
122
        all_data_iterators = [
123
124
125
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
126
127
128
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
129
130
131
132
133
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
134
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
135
136

    # Print setup timing.
137
138
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
139
    print_rank_0('training ...')
140
141

    iteration = 0
142
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
143
144
145
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
146
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
147

148
149
150
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
151
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
152
                                   iteration, False)
153
154

    if args.save and iteration != 0:
155
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
156
157
158
159
160
161

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
162
                                   0, True)
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
180
181
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
182
183
            iterations += 1
        # Reset
184
        update_num_microbatches(0, consistency_check=False)
185
186
187
188
189
190
191
192
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

193

Mohammad's avatar
Mohammad committed
194
def get_model(model_provider_func):
195
    """Build the model."""
Mohammad's avatar
Mohammad committed
196
    args = get_args()
197
198

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
199
    model = model_provider_func()
200
201
    if not isinstance(model, list):
        model = [model]
202

203
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
204
205
206
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
207
208
209
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
210

211
212
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
213
        print(' > number of parameters on (tensor, pipeline) '
214
              'model parallel rank ({}, {}): {}'.format(
215
216
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
217
218
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
219
220

    # GPU allocation.
221
222
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
223
224
225

    # Fp16 conversion.
    if args.fp16:
226
        model = [FP16Module(model_module) for model_module in model]
227
228
229

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
230
231
232
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
233
234
        return model
    if args.DDP_impl == 'local':
235
        model = [LocalDDP(model_module) for model_module in model]
236
237
        return model

238
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
239
                              'Exiting.'.format(args.DDP_impl))
240
241


Mohammad's avatar
Mohammad committed
242
def get_learning_rate_scheduler(optimizer):
243
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
244
    args = get_args()
245

246
247
248
249
250
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
251
252
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
253
254
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
255
256
257
258
259
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
260
        update_train_iters(args)
261
262
263
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
264
265
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
266
267
        else:
            warmup_steps = args.lr_warmup_samples
268
    else:
269
270
271
        raise Exception(
            'either train-iters or train-samples should be provided.')

272
273
    lr_scheduler = AnnealingLR(
        optimizer,
274
        max_lr=args.lr,
275
        min_lr=args.min_lr,
276
277
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
278
        decay_style=args.lr_decay_style,
279
280
281
282
283
284
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
285
def setup_model_and_optimizer(model_provider_func):
286
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
287
    args = get_args()
288

Mohammad's avatar
Mohammad committed
289
    model = get_model(model_provider_func)
290

291
292
    unwrapped_model = unwrap_model(model,
                                   (torchDDP, LocalDDP, FP16Module))
293
294
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
295
    lr_scheduler = get_learning_rate_scheduler(optimizer)
296
297

    if args.load is not None:
298
299
300
301
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
302
        timers('load-checkpoint').start()
303
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
304
        torch.distributed.barrier()
305
306
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
307
308
309
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
310
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
311
312
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'
Mostofa Patwary's avatar
Mostofa Patwary committed
313
    if len(model) > 1:
314
315
316
        assert args.DDP_impl == 'local'
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        assert args.DDP_impl == 'local'
mohammad's avatar
mohammad committed
317

Neel Kant's avatar
Neel Kant committed
318
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
319
320
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
321
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
322
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
323
324
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
325

326
327
328
    return model, optimizer, lr_scheduler


329
330
331
332
333
334
335
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
336
    optimizer.zero_grad()
337
338

    if mpu.get_pipeline_model_parallel_world_size() > 1:
339
340
341
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
        else:
342
            forward_backward_func = forward_backward_pipelining_without_interleaving
343
    else:
344
345
346
347
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
348
349
350

    # All-reduce if needed.
    if args.DDP_impl == 'local':
351
        timers('backward-params-all-reduce').start()
352
353
354
        for model_module in model:
            model_module.allreduce_params(reduce_after=False,
                                          fp32_allreduce=args.fp32_allreduce)
355
        timers('backward-params-all-reduce').stop()
356

357
358
359
360
361
    # Barrier to measure backward stall.
    timers('backward-pipeline-stall').start()
    torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
    timers('backward-pipeline-stall').stop()

362
363
364
365
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
366
    timers('backward-embedding-all-reduce').start()
367
368
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
369
            mpu.get_pipeline_model_parallel_world_size() > 1:
370
371
372
373
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
374
375
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, FP16Module))
376

377
378
379
380
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
381
    timers('backward-embedding-all-reduce').stop()
382

383
384
    # Update parameters.
    timers('optimizer').start()
385
    update_successful, grad_norm = optimizer.step()
386
387
388
    timers('optimizer').stop()

    # Update learning rate.
389
    if update_successful:
390
391
392
393
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
394
        skipped_iter = 0
395
396
397
    else:
        skipped_iter = 1

398
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
399
400
401
402
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
403
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
404
405
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
406
407


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
408
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
409
410
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm):
Mohammad's avatar
Mohammad committed
411
412
413
414
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
415

mohammad's avatar
mohammad committed
416
417
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
418
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
419
420
421
422
423
424
425
426
427
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
428
429
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
430
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
431
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
432
    for key in loss_dict:
mohammad's avatar
mohammad committed
433
        if not skipped_iter:
434
435
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
436
437
438
439
440
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
441
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
442
443
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
444
445
446

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
447

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
448
449
450
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
451
    add_to_logging('forward-compute')
452
    add_to_logging('forward-pipeline-stall')
453
454
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
455
    add_to_logging('forward-backward-send-forward-backward-recv')
456
    add_to_logging('backward-compute')
457
    add_to_logging('backward-pipeline-stall')
458
459
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
460
    add_to_logging('backward-send-forward-recv')
461
    add_to_logging('backward-send-backward-recv')
462
    add_to_logging('backward-params-all-reduce')
463
    add_to_logging('backward-embedding-all-reduce')
464
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
465
    add_to_logging('optimizer-unscale-and-check-inf')
466
467
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
468
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
469
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
470

mohammad's avatar
mohammad committed
471
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
472
473
474
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
475
476
477
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
478
    # Tensorboard values.
479
480
481
482
483
484
485
486
487
488
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
489
        for key in loss_dict:
mohammad's avatar
mohammad committed
490
491
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
492
                              args.consumed_train_samples)
493
        if args.log_loss_scale_to_tensorboard:
mohammad's avatar
mohammad committed
494
495
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
496
                              args.consumed_train_samples)
497
498
499
500
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
501
502
503
504
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
505
506
507
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
509

    if iteration % args.log_interval == 0:
510
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
511
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
        if writer and torch.distributed.get_rank() == 0:
513
514
515
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
516
517
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
518
        log_string += ' consumed samples: {:12d} |'.format(
519
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
520
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
521
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
522
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
523
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
524
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
525
526
527
528
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
529
530
531
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
532
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
533
534
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
535
536
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
537
538
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
539
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
540
541
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
542
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
543
        total_loss_dict[nan_iters_key] = 0
544
        print_rank_last(log_string)
545
546
547
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
548
549
550
551
552
553
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


554
555
556
557
558
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
559
    timers('save-checkpoint').start()
560
561
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
562
563
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
564
565


566
def train(forward_step_func, model, optimizer, lr_scheduler,
567
          train_data_iterator, valid_data_iterator):
568
    """Train the model function."""
Mohammad's avatar
Mohammad committed
569
570
    args = get_args()
    timers = get_timers()
571

572
573
574
    # Write args to tensorboard
    write_args_to_tensorboard()

575
    # Turn on training mode which enables dropout.
576
577
    for model_module in model:
        model_module.train()
578
579
580
581
582
583
584

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

585
    timers('interval-time').start()
586
    print_datetime('before the start of training step')
587
588
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
589
        update_num_microbatches(args.consumed_train_samples)
590
591
592
593
594
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
595
        iteration += 1
596
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
597
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
598
                                       get_num_microbatches()
599
600

        # Logging.
601
        loss_scale = optimizer.get_loss_scale().item()
602
603
604
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
605
606
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
607
                                          iteration, loss_scale,
608
                                          report_memory_flag, skipped_iter,
mohammad's avatar
mohammad committed
609
                                          grad_norm, params_norm)
610
611

        # Autoresume
612
613
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
614
            check_adlr_autoresume_termination(iteration, model, optimizer,
615
                                              lr_scheduler)
616
617
618
619
620
621

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
622
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
623
                                       iteration, False)
624

625
626
627
628
629
630
631
632
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
649
        if args.exit_interval and iteration % args.exit_interval == 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
650
651
652
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
653
            torch.distributed.barrier()
654
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
655
            sys.exit()
656

657

mohammad's avatar
mohammad committed
658
    return iteration
659
660


Mohammad's avatar
Mohammad committed
661
def evaluate(forward_step_func, data_iterator, model, verbose=False):
662
    """Evaluation."""
Mohammad's avatar
Mohammad committed
663
    args = get_args()
664
665

    # Turn on evaluation mode which disables dropout.
666
667
    for model_module in model:
        model_module.eval()
668
669
670
671
672
673
674
675
676
677

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
678

679
680
681
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
682
                else:
683
                    forward_backward_func = forward_backward_pipelining_without_interleaving
684
685
686
687
688
689
690
691
692
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
693
                    for key in loss_dict:
694
695
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
696

697
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
698
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
699
                                           * get_num_microbatches()
700
    # Move model back to the train mode.
701
702
    for model_module in model:
        model_module.train()
703
704

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
705
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
706
707
708
709
710

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
711
                               iteration, verbose=False):
712
    """Helper function to evaluate and dump results on screen."""
713
    args = get_args()
Mohammad's avatar
Mohammad committed
714
715
716
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
717
718
719
720
721
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
722
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
723
            writer.add_scalar('{} validation'.format(key),
724
725
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
726
            writer.add_scalar('{} validation vs samples'.format(key),
727
728
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
729
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
730
                writer.add_scalar('{} validation ppl'.format(key), ppl,
731
                                  iteration)
mohammad's avatar
mohammad committed
732
                writer.add_scalar('{} validation ppl vs samples'.format(key),
733
                                  ppl, args.consumed_train_samples)
734
735

    length = len(string) + 1
736
737
738
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
739
740


Vijay Korthikanti's avatar
Vijay Korthikanti committed
741
def cyclic_iter(iter):
742
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
743
        for x in iter:
744
745
            yield x

746
747
748
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
749
    args = get_args()
750

751
752
753
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
754
755
756

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
757
758
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
759
        args.consumed_train_samples = args.iteration * args.global_batch_size
760
    if args.iteration > 0 and args.consumed_valid_samples == 0:
761
762
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
763
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
764
            args.eval_iters * args.global_batch_size
765

766
    # Data loader only on rank 0 of each model parallel group.
767
    if mpu.get_tensor_model_parallel_rank() == 0:
768
769

        # Number of train/valid/test samples.
770
771
772
773
774
775
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
776
        test_iters = args.eval_iters
777
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
778
779
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
780
781
782
783
784
785
786
787
788
789
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
790
791
792
793
794
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
795
796
797
798
799
800
801
802
803
804
805
806
807

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
808
809
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
810
811
812
813
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
814

815
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
816
817
818
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

819
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
820
821
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
822
823
824
    else:
        train_data_iterator = None

825
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
826
827
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
828
    else:
829
        valid_data_iterator = None
830

831
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
832
833
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
834
835
836
    else:
        test_data_iterator = None

837
    return train_data_iterator, valid_data_iterator, test_data_iterator