training.py 34.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import forward_backward_no_pipelining
53
from megatron.schedules import forward_backward_pipelining_without_interleaving
54
from megatron.schedules import forward_backward_pipelining_with_interleaving
Mostofa Patwary's avatar
Mostofa Patwary committed
55
from megatron.utils import report_memory
56
57


58
59
60
61
62
63
64
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


65
66
67
68
def pretrain(train_valid_test_dataset_provider, 
             model_provider,
             forward_step_func, 
             extra_args_provider=None, 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
83
84
85
86
87
88
89
90
91
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
92
93
    """

94
    # Initalize and get arguments, timers, and Tensorboard writer.
95
96
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
97

98
99
100
101
102
103
104
105
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
106
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
107
108
109
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

110
    args = get_args()
Mohammad's avatar
Mohammad committed
111
    timers = get_timers()
112
113

    # Model, optimizer, and learning rate.
114
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
115
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
116
    timers('model-and-optimizer-setup').stop()
117
118
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
119
120

    # Data stuff.
121
122
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
123
        all_data_iterators = [
124
125
126
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
127
128
129
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
130
131
132
133
134
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
135
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
136
137

    # Print setup timing.
138
139
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
140
    print_rank_0('training ...')
141
142

    iteration = 0
143
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
144
145
146
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
147
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
148

149
150
151
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
152
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
153
                                   iteration, False)
154
155

    if args.save and iteration != 0:
156
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
157
158
159
160
161
162

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
163
                                   0, True)
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
181
182
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
183
184
            iterations += 1
        # Reset
185
        update_num_microbatches(0, consistency_check=False)
186
187
188
189
190
191
192
193
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

194

Mohammad's avatar
Mohammad committed
195
def get_model(model_provider_func):
196
    """Build the model."""
Mohammad's avatar
Mohammad committed
197
    args = get_args()
198
199

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
200
    model = model_provider_func()
201
202
    if not isinstance(model, list):
        model = [model]
203

204
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
205
206
207
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
208
209
210
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
211

212
213
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
214
        print(' > number of parameters on (tensor, pipeline) '
215
              'model parallel rank ({}, {}): {}'.format(
216
217
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
218
219
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
220
221

    # GPU allocation.
222
223
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
224
225
226

    # Fp16 conversion.
    if args.fp16:
227
        model = [FP16Module(model_module) for model_module in model]
228
229
230

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
231
232
233
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
234
235
        return model
    if args.DDP_impl == 'local':
236
        model = [LocalDDP(model_module) for model_module in model]
237
238
        return model

239
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
240
                              'Exiting.'.format(args.DDP_impl))
241
242


Mohammad's avatar
Mohammad committed
243
def get_learning_rate_scheduler(optimizer):
244
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
245
    args = get_args()
246

247
248
249
250
251
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
252
253
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
254
255
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
256
257
258
259
260
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
261
        update_train_iters(args)
262
263
264
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
265
266
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
267
268
        else:
            warmup_steps = args.lr_warmup_samples
269
    else:
270
271
272
        raise Exception(
            'either train-iters or train-samples should be provided.')

273
274
    lr_scheduler = AnnealingLR(
        optimizer,
275
        max_lr=args.lr,
276
        min_lr=args.min_lr,
277
278
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
279
        decay_style=args.lr_decay_style,
280
281
282
283
284
285
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
286
def setup_model_and_optimizer(model_provider_func):
287
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
288
    args = get_args()
289

Mohammad's avatar
Mohammad committed
290
    model = get_model(model_provider_func)
291

292
293
    unwrapped_model = unwrap_model(model,
                                   (torchDDP, LocalDDP, FP16Module))
294
295
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
296
    lr_scheduler = get_learning_rate_scheduler(optimizer)
297
298

    if args.load is not None:
299
300
301
302
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
303
        timers('load-checkpoint').start()
304
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
305
        torch.distributed.barrier()
306
307
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
308
309
310
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
311
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
312
313
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'
Mostofa Patwary's avatar
Mostofa Patwary committed
314
    if len(model) > 1:
315
316
317
        assert args.DDP_impl == 'local'
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        assert args.DDP_impl == 'local'
mohammad's avatar
mohammad committed
318

Neel Kant's avatar
Neel Kant committed
319
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
320
321
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
322
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
323
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
324
325
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
326

327
328
329
    return model, optimizer, lr_scheduler


330
331
332
333
334
335
336
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
337
    optimizer.zero_grad()
338
339

    if mpu.get_pipeline_model_parallel_world_size() > 1:
340
341
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
342
343
344
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
345
        else:
346
            forward_backward_func = forward_backward_pipelining_without_interleaving
347
    else:
348
349
350
351
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
352
353
354

    # All-reduce if needed.
    if args.DDP_impl == 'local':
355
        timers('backward-params-all-reduce').start()
356
357
358
        for model_module in model:
            model_module.allreduce_params(reduce_after=False,
                                          fp32_allreduce=args.fp32_allreduce)
359
        timers('backward-params-all-reduce').stop()
360

361
362
363
364
365
    # Barrier to measure backward stall.
    timers('backward-pipeline-stall').start()
    torch.distributed.barrier(group=mpu.get_pipeline_model_parallel_group())
    timers('backward-pipeline-stall').stop()

366
367
368
369
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
370
    timers('backward-embedding-all-reduce').start()
371
372
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
373
            mpu.get_pipeline_model_parallel_world_size() > 1:
374
375
376
377
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
378
379
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, FP16Module))
380

381
382
383
384
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
385
    timers('backward-embedding-all-reduce').stop()
386

387
388
    # Update parameters.
    timers('optimizer').start()
389
    update_successful, grad_norm = optimizer.step()
390
391
392
    timers('optimizer').stop()

    # Update learning rate.
393
    if update_successful:
394
395
396
397
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
398
        skipped_iter = 0
399
400
401
    else:
        skipped_iter = 1

402
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
403
404
405
406
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
407
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
408
409
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
410
411


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
413
414
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm):
Mohammad's avatar
Mohammad committed
415
416
417
418
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
419

mohammad's avatar
mohammad committed
420
421
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
422
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
423
424
425
426
427
428
429
430
431
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
432
433
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
434
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
435
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
436
    for key in loss_dict:
mohammad's avatar
mohammad committed
437
        if not skipped_iter:
438
439
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
440
441
442
443
444
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
445
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
446
447
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
448
449
450

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
451

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
452
453
454
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
455
    add_to_logging('forward-compute')
456
    add_to_logging('forward-pipeline-stall')
457
458
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
459
    add_to_logging('forward-backward-send-forward-backward-recv')
460
    add_to_logging('backward-compute')
461
    add_to_logging('backward-pipeline-stall')
462
463
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
464
    add_to_logging('backward-send-forward-recv')
465
    add_to_logging('backward-send-backward-recv')
466
    add_to_logging('backward-params-all-reduce')
467
    add_to_logging('backward-embedding-all-reduce')
468
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
469
    add_to_logging('optimizer-unscale-and-check-inf')
470
471
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
472
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
473
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
474

mohammad's avatar
mohammad committed
475
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
476
477
478
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
479
480
481
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
482
    # Tensorboard values.
483
484
485
486
487
488
489
490
491
492
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493
        for key in loss_dict:
mohammad's avatar
mohammad committed
494
495
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
496
                              args.consumed_train_samples)
497
        if args.log_loss_scale_to_tensorboard:
mohammad's avatar
mohammad committed
498
499
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
500
                              args.consumed_train_samples)
501
502
503
504
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
505
506
507
508
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
509
510
511
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
513

    if iteration % args.log_interval == 0:
514
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
515
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
516
        if writer and torch.distributed.get_rank() == 0:
517
518
519
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
520
521
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
522
        log_string += ' consumed samples: {:12d} |'.format(
523
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
524
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
525
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
526
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
527
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
528
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
529
530
531
532
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
533
534
535
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
536
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
537
538
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
539
540
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
541
542
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
543
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
544
545
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
546
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
547
        total_loss_dict[nan_iters_key] = 0
548
        print_rank_last(log_string)
549
550
551
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
552
553
554
555
556
557
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


558
559
560
561
562
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
563
    timers('save-checkpoint').start()
564
565
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
566
567
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
568
569


570
def train(forward_step_func, model, optimizer, lr_scheduler,
571
          train_data_iterator, valid_data_iterator):
572
    """Train the model function."""
Mohammad's avatar
Mohammad committed
573
574
    args = get_args()
    timers = get_timers()
575

576
577
578
    # Write args to tensorboard
    write_args_to_tensorboard()

579
    # Turn on training mode which enables dropout.
580
581
    for model_module in model:
        model_module.train()
582
583
584
585
586
587
588

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

589
    timers('interval-time').start()
590
    print_datetime('before the start of training step')
591
592
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
593
        update_num_microbatches(args.consumed_train_samples)
594
595
596
597
598
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
599
        iteration += 1
600
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
601
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
602
                                       get_num_microbatches()
603
604

        # Logging.
605
        loss_scale = optimizer.get_loss_scale().item()
606
607
608
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
609
610
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
611
                                          iteration, loss_scale,
612
                                          report_memory_flag, skipped_iter,
mohammad's avatar
mohammad committed
613
                                          grad_norm, params_norm)
614
615

        # Autoresume
616
617
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
618
            check_adlr_autoresume_termination(iteration, model, optimizer,
619
                                              lr_scheduler)
620
621
622
623
624
625

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
626
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
627
                                       iteration, False)
628

629
630
631
632
633
634
635
636
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
653
        if args.exit_interval and iteration % args.exit_interval == 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
654
655
656
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
657
            torch.distributed.barrier()
658
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
659
            sys.exit()
660

661

mohammad's avatar
mohammad committed
662
    return iteration
663
664


Mohammad's avatar
Mohammad committed
665
def evaluate(forward_step_func, data_iterator, model, verbose=False):
666
    """Evaluation."""
Mohammad's avatar
Mohammad committed
667
    args = get_args()
668
669

    # Turn on evaluation mode which disables dropout.
670
671
    for model_module in model:
        model_module.eval()
672
673
674
675
676
677
678
679
680
681

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
682

683
684
685
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
686
                else:
687
                    forward_backward_func = forward_backward_pipelining_without_interleaving
688
689
690
691
692
693
694
695
696
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
697
                    for key in loss_dict:
698
699
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
700

701
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
702
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
703
                                           * get_num_microbatches()
704
    # Move model back to the train mode.
705
706
    for model_module in model:
        model_module.train()
707
708

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
709
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
710
711
712
713
714

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
715
                               iteration, verbose=False):
716
    """Helper function to evaluate and dump results on screen."""
717
    args = get_args()
Mohammad's avatar
Mohammad committed
718
719
720
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
721
722
723
724
725
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
726
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
727
            writer.add_scalar('{} validation'.format(key),
728
729
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
730
            writer.add_scalar('{} validation vs samples'.format(key),
731
732
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
733
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
734
                writer.add_scalar('{} validation ppl'.format(key), ppl,
735
                                  iteration)
mohammad's avatar
mohammad committed
736
                writer.add_scalar('{} validation ppl vs samples'.format(key),
737
                                  ppl, args.consumed_train_samples)
738
739

    length = len(string) + 1
740
741
742
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
743
744


Vijay Korthikanti's avatar
Vijay Korthikanti committed
745
def cyclic_iter(iter):
746
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
747
        for x in iter:
748
749
            yield x

750
751
752
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
753
    args = get_args()
754

755
756
757
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
758
759
760

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
761
762
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
763
        args.consumed_train_samples = args.iteration * args.global_batch_size
764
    if args.iteration > 0 and args.consumed_valid_samples == 0:
765
766
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
767
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
768
            args.eval_iters * args.global_batch_size
769

770
    # Data loader only on rank 0 of each model parallel group.
771
    if mpu.get_tensor_model_parallel_rank() == 0:
772
773

        # Number of train/valid/test samples.
774
775
776
777
778
779
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
780
        test_iters = args.eval_iters
781
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
782
783
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
784
785
786
787
788
789
790
791
792
793
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
794
795
796
797
798
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
799
800
801
802
803
804
805
806
807
808
809
810
811

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
812
813
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
814
815
816
817
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
818

819
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
820
821
822
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

823
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
824
825
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
826
827
828
    else:
        train_data_iterator = None

829
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
830
831
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
832
    else:
833
        valid_data_iterator = None
834

835
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
836
837
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
838
839
840
    else:
        test_data_iterator = None

841
    return train_data_iterator, valid_data_iterator, test_data_iterator