arguments.py 40.4 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vit_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

85
86
87
88
89
90
91
92
93
94
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
95
96
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
97
98
99
100
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
101
    del args.checkpoint_activations
102

Jared Casper's avatar
Jared Casper committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
117
118
119
120
121
122
123
124
125
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
126
    if args.num_layers_per_virtual_pipeline_stage is not None:
127
128
129
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
130
131
132
133
134
135
136
137
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
138

139
140
141
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142
        assert not args.bf16
143
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
144
145
146
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
147
148
149
150
151
152
153
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154

155
156
157
158
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

159
160
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161
162
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
163
        assert args.use_contiguous_buffers_in_local_ddp
164

mshoeybi's avatar
mshoeybi committed
165
166
167
168
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

169
170
171
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

172
173
174
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
175

176
177
178
179
180
181
182
183
184
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
185
            'expected iteration-based learning rate warmup'
186
187
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
188
        if args.lr_warmup_fraction is not None:
189
            assert args.lr_warmup_iters == 0, \
190
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
191
192
193
194
195
196
197
198
199
200
201

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
202
        if args.lr_warmup_fraction is not None:
203
            assert args.lr_warmup_samples == 0, \
204
205
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
206

207
    # Check required arguments.
Mohammad's avatar
Mohammad committed
208
209
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
210
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
211
        _check_arg_is_not_none(args, req_arg)
212

Mohammad's avatar
Mohammad committed
213
    # Checks.
214
215
216
217
218
219
220
221
222
223
224
225
226
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
227

Mohammad's avatar
Mohammad committed
228
229
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
230
231
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
232
233
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
234
235
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
236
237
238
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
239
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
240
241
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
mohammad's avatar
mohammad committed
242
243
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
mshoeybi's avatar
mshoeybi committed
244
245
246
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
247
        assert args.activations_checkpoint_method is not None, \
mohammad's avatar
mohammad committed
248
            'for distribute-checkpointed-activations to work you '\
mshoeybi's avatar
mshoeybi committed
249
            'need to use a activation-checkpoint method '
mshoeybi's avatar
tested  
mshoeybi committed
250
251
252
        assert args.num_layers_per_virtual_pipeline_stage is None, \
            'currently distrobuted checkpoint activations only supported for ' \
            'nointerleaved pipeline parallelism'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
253

Mohammad's avatar
Mohammad committed
254
255
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
256
257


Mohammad's avatar
Mohammad committed
258
259
260
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
261
262
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
263
264
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
265
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
266
267
268
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
269
270
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
271
272


273
274
275
276
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
277
278
279
280
281
282
283
284
285
286
287
288
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
289
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
290
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
291

292
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
293
                       help='Number of transformer layers.')
294
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
295
                       help='Tansformer hidden size.')
296
    group.add_argument('--ffn-hidden-size', type=int, default=None,
297
298
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
299
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
300
                       help='Number of transformer attention heads.')
301
    group.add_argument('--kv-channels', type=int, default=None,
302
303
304
305
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
306
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
307
308
309
310
311
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
312
313
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
314
315
316
317
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
318
319
320
321
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
322
    group.add_argument('--onnx-safe', type=bool, required=False,
323
324
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
325
326
327
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
328

Mohammad's avatar
Mohammad committed
329
330
331
    return parser


332
333
334
335
336
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
337
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
338
                       help='If set, calculate and log the number of zeros in gradient.')
339
340
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
341
342
343
344
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
361
362
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
363
                       help='Enable memory logging to tensorboard.')
364
365
366
367

    return parser


Mohammad's avatar
Mohammad committed
368
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
369
370
371
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
372
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
373
374
375
376
377
378
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
379
    group.add_argument('--adam-beta1', type=float, default=0.9,
380
381
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
382
    group.add_argument('--adam-beta2', type=float, default=0.999,
383
384
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
385
    group.add_argument('--adam-eps', type=float, default=1e-08,
386
                       help='Term added to the denominator to improve'
387
                       'numerical stability')
388
389
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
390
391
392

    return parser

Mohammad's avatar
Mohammad committed
393
394

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
395
396
    group = parser.add_argument_group(title='training')

397
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
398
399
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
400
                       'parallel size times number of micro batches.')
401
402
403
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
404
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
405
406
407
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
408
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
409
410
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
411
412
413
414
415
416
417
418
419
420
421
422
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
423
424
425
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
426
427
428
429
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
430
431
432
433
434
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
435
436
437
438
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
439
440
441
442
443
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
444
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
445
                       help='Total number of iterations to train over all '
446
447
448
449
450
451
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
452
453
454
455
456
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
457
458
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
459
460
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
461
    group.add_argument('--no-masked-softmax-fusion',
462
463
464
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
465
                       dest='masked_softmax_fusion')
466
467
468
469
470
471
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
472
473
474
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
475
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
476
477
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
478
479
480
481
482
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
                       action='store_true',
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
                       'gradient compuation of a column-linear layer.')
Mohammad's avatar
Mohammad committed
483
484
485
    return parser


Mohammad's avatar
Mohammad committed
486
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
487
488
489
490
491
492
493
494
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
495
496
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
497

Mohammad's avatar
Mohammad committed
498
499
500
    return parser


Mohammad's avatar
Mohammad committed
501
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
502
503
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
504
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
505
506
507
508
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
509
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
510
511
512
513
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
514
515
516
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
517
518
519
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
520
521
522
523
524
525
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
526
    group.add_argument('--warmup', type=int, default=None,
527
                       help='Old lr warmup argument, do not use. Use one of the'
528
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
547
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
548
549
550
551
552
553
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
554
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
555
                       help='Do not save current optimizer.')
556
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
557
558
559
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
560
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
561
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
562
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
563
564
565
566
567
568
569
570
571
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
572
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
573
574
575
576
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
577
578
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
579
580
581
582
583
584
585
586
587
588
589
590
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
591
592
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
593
594
595
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
596
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
597
598
599
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
600
601
602
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
603
604
605
606
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
607
608
609
    return parser


Mohammad's avatar
Mohammad committed
610
def _add_distributed_args(parser):
611
612
    group = parser.add_argument_group(title='distributed')

613
614
615
616
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
617
618
619
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
620
621
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
622
623
624
625
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
626
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
627
628
                       help='which DistributedDataParallel implementation '
                       'to use.')
629
630
631
632
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
633
634
635
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
636
637
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
638
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
639
640
641
642
643
644
645
646
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
647
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
648
649
650
651
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
Mohammad's avatar
Mohammad committed
652
653
654
    return parser


Mohammad's avatar
Mohammad committed
655
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
656
657
658
659
660
661
662
663
664
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
665
666
667
    return parser


Mohammad's avatar
Mohammad committed
668
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
669
670
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
671
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
672
673
674
675
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
676
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
677
678
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
679
680
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
681
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
682
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
683
684
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
685
686
687
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
688
    group.add_argument('--seq-length', type=int, default=None,
689
                       help='Maximum sequence length to process.')
690
    group.add_argument('--encoder-seq-length', type=int, default=None,
691
692
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
693
694
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
695
696
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
697
                        ' for retriever')
698
699
700
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
701
702
703
704
705
706
707
708
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
709
710
711
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
712
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
713
714
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
715
716
717
718
719
720
721
722
723
724
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
725

Mohammad's avatar
Mohammad committed
726
727
    return parser

Raul Puri's avatar
Raul Puri committed
728

Mohammad's avatar
Mohammad committed
729
730
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
731

Mohammad's avatar
Mohammad committed
732
733
734
735
736
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
737

Mohammad's avatar
Mohammad committed
738
    return parser
Neel Kant's avatar
Neel Kant committed
739
740


Mostofa Patwary's avatar
Mostofa Patwary committed
741
742
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
743
744
745

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
746
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
747
                        'REALM (paper default: 128)')
748
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
749
750
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
751
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
752
753
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
754
755
756
757
758

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
759
760
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
761
762
763
764
765

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
766
767
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
768
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
769
                       help='Whether to use one sentence documents in ICT')
770
771
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
772

773
    # training
774
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
775
776
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
777
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
778
779
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
780

Neel Kant's avatar
Neel Kant committed
781
    # faiss index
Neel Kant's avatar
Neel Kant committed
782
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
783
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
784
785
786
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
787
788
789

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
790
791
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
792
    group.add_argument('--indexer-log-interval', type=int, default=1000,
793
794
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
795
    return parser
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser