training.py 34.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
47
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import forward_backward_no_pipelining
52
from megatron.schedules import forward_backward_pipelining_without_interleaving
53
from megatron.schedules import forward_backward_pipelining_with_interleaving
Mostofa Patwary's avatar
Mostofa Patwary committed
54
from megatron.utils import report_memory
55
56


57
58
59
60
61
62
63
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


64
65
66
67
def pretrain(train_valid_test_dataset_provider, 
             model_provider,
             forward_step_func, 
             extra_args_provider=None, 
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
82
83
84
85
86
87
88
89
90
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
91
92
    """

93
    # Initalize and get arguments, timers, and Tensorboard writer.
94
95
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
96

97
98
99
100
101
102
103
104
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
105
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
106
107
108
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

109
    args = get_args()
Mohammad's avatar
Mohammad committed
110
    timers = get_timers()
111
112

    # Model, optimizer, and learning rate.
113
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
114
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
115
    timers('model-and-optimizer-setup').stop()
116
117
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
118
119

    # Data stuff.
120
121
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
122
        all_data_iterators = [
123
124
125
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
126
127
128
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
129
130
131
132
133
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
134
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
135
136

    # Print setup timing.
137
138
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
139
    print_rank_0('training ...')
140
141

    iteration = 0
142
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
143
144
145
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
146
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
147

148
149
150
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
151
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
152
                                   iteration, False)
153
154

    if args.save and iteration != 0:
155
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
156
157
158
159
160
161

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
162
                                   0, True)
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
180
181
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
182
183
            iterations += 1
        # Reset
184
        update_num_microbatches(0, consistency_check=False)
185
186
187
188
189
190
191
192
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

193

Mohammad's avatar
Mohammad committed
194
def get_model(model_provider_func):
195
    """Build the model."""
Mohammad's avatar
Mohammad committed
196
    args = get_args()
197
198

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
199
    model = model_provider_func()
200
201
    if not isinstance(model, list):
        model = [model]
202

203
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
204
205
206
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
207
208
209
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
210

211
212
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
213
        print(' > number of parameters on (tensor, pipeline) '
214
              'model parallel rank ({}, {}): {}'.format(
215
216
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
217
218
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
219
220

    # GPU allocation.
221
222
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
223
224
225

    # Fp16 conversion.
    if args.fp16:
226
        model = [FP16Module(model_module) for model_module in model]
227
228
229

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
230
231
232
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
233
234
        return model
    if args.DDP_impl == 'local':
235
        model = [LocalDDP(model_module) for model_module in model]
236
237
        return model

238
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
239
                              'Exiting.'.format(args.DDP_impl))
240
241


Mohammad's avatar
Mohammad committed
242
def get_learning_rate_scheduler(optimizer):
243
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
244
    args = get_args()
245

246
247
248
249
250
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
251
252
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
253
254
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
255
256
257
258
259
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
260
        update_train_iters(args)
261
262
263
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
264
265
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
266
267
        else:
            warmup_steps = args.lr_warmup_samples
268
    else:
269
270
271
        raise Exception(
            'either train-iters or train-samples should be provided.')

272
273
    lr_scheduler = AnnealingLR(
        optimizer,
274
        max_lr=args.lr,
275
        min_lr=args.min_lr,
276
277
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
278
        decay_style=args.lr_decay_style,
279
280
281
282
283
284
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
285
def setup_model_and_optimizer(model_provider_func):
286
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
287
    args = get_args()
288

Mohammad's avatar
Mohammad committed
289
    model = get_model(model_provider_func)
290

291
292
    unwrapped_model = unwrap_model(model,
                                   (torchDDP, LocalDDP, FP16Module))
293
294
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
295
    lr_scheduler = get_learning_rate_scheduler(optimizer)
296
297

    if args.load is not None:
298
299
300
301
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
302
        timers('load-checkpoint').start()
303
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
304
        torch.distributed.barrier()
305
306
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
307
308
309
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
310
    # We only support local DDP with multiple micro-batches.
Mostofa Patwary's avatar
Mostofa Patwary committed
311
    if len(model) > 1:
312
313
314
        assert args.DDP_impl == 'local'
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        assert args.DDP_impl == 'local'
mohammad's avatar
mohammad committed
315

Neel Kant's avatar
Neel Kant committed
316
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
317
318
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
319
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
320
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
321
322
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
323

324
325
326
    return model, optimizer, lr_scheduler


327
328
329
330
331
332
333
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
334
    optimizer.zero_grad()
335
336

    if mpu.get_pipeline_model_parallel_world_size() > 1:
337
338
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
339
340
341
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
342
        else:
343
            forward_backward_func = forward_backward_pipelining_without_interleaving
344
    else:
345
346
347
348
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
349
350
351

    # All-reduce if needed.
    if args.DDP_impl == 'local':
352
        timers('backward-params-all-reduce').start()
353
354
355
        for model_module in model:
            model_module.allreduce_params(reduce_after=False,
                                          fp32_allreduce=args.fp32_allreduce)
356
        timers('backward-params-all-reduce').stop()
357

358
359
360
361
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
362
    timers('backward-embedding-all-reduce').start()
363
364
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
365
            mpu.get_pipeline_model_parallel_world_size() > 1:
366
367
368
369
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
370
371
        unwrapped_model = unwrap_model(
            unwrapped_model, (torchDDP, LocalDDP, FP16Module))
372

373
374
375
376
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
377
    timers('backward-embedding-all-reduce').stop()
378

379
380
    # Update parameters.
    timers('optimizer').start()
381
    update_successful, grad_norm = optimizer.step()
382
383
384
    timers('optimizer').stop()

    # Update learning rate.
385
    if update_successful:
386
387
388
389
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
390
        skipped_iter = 0
391
392
393
    else:
        skipped_iter = 1

394
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
395
396
397
398
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
399
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
400
401
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
402
403


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
404
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
405
406
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm):
Mohammad's avatar
Mohammad committed
407
408
409
410
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411

mohammad's avatar
mohammad committed
412
413
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
414
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
415
416
417
418
419
420
421
422
423
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
424
425
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
426
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
427
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
428
    for key in loss_dict:
mohammad's avatar
mohammad committed
429
        if not skipped_iter:
430
431
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
432
433
434
435
436
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
437
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
438
439
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
440
441
442

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
443

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
444
445
446
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
447
448
449
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
450
    add_to_logging('forward-backward-send-forward-backward-recv')
451
452
453
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
454
    add_to_logging('backward-send-forward-recv')
455
    add_to_logging('backward-send-backward-recv')
456
    add_to_logging('backward-params-all-reduce')
457
    add_to_logging('backward-embedding-all-reduce')
458
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
459
    add_to_logging('optimizer-unscale-and-check-inf')
460
461
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
462
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
463
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
464

mohammad's avatar
mohammad committed
465
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
466
467
468
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
469
470
471
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
472
    # Tensorboard values.
473
474
475
476
477
478
479
480
481
482
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
483
        for key in loss_dict:
mohammad's avatar
mohammad committed
484
485
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
486
                              args.consumed_train_samples)
487
        if args.log_loss_scale_to_tensorboard:
mohammad's avatar
mohammad committed
488
489
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
490
                              args.consumed_train_samples)
491
492
493
494
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
495
496
497
498
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
499
500
501
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
503

    if iteration % args.log_interval == 0:
504
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
505
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
506
        if writer and torch.distributed.get_rank() == 0:
507
508
509
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
510
511
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
512
        log_string += ' consumed samples: {:12d} |'.format(
513
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
514
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
515
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
516
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
517
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
519
520
521
522
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
523
524
525
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
526
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
527
528
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
529
530
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
531
532
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
533
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
534
535
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
536
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
537
        total_loss_dict[nan_iters_key] = 0
538
        print_rank_last(log_string)
539
540
541
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
543
544
545
546
547
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


548
549
550
551
552
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
553
    timers('save-checkpoint').start()
554
555
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
556
557
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
558
559


560
def train(forward_step_func, model, optimizer, lr_scheduler,
561
          train_data_iterator, valid_data_iterator):
562
    """Train the model function."""
Mohammad's avatar
Mohammad committed
563
564
    args = get_args()
    timers = get_timers()
565

566
567
568
    # Write args to tensorboard
    write_args_to_tensorboard()

569
    # Turn on training mode which enables dropout.
570
571
    for model_module in model:
        model_module.train()
572
573
574
575
576
577
578

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

579
    timers('interval-time').start()
580
    print_datetime('before the start of training step')
581
582
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
583
        update_num_microbatches(args.consumed_train_samples)
584
585
586
587
588
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
589
        iteration += 1
590
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
591
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
592
                                       get_num_microbatches()
593
594

        # Logging.
595
        loss_scale = optimizer.get_loss_scale().item()
596
597
598
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
600
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
601
                                          iteration, loss_scale,
602
                                          report_memory_flag, skipped_iter,
mohammad's avatar
mohammad committed
603
                                          grad_norm, params_norm)
604
605

        # Autoresume
606
607
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
608
            check_adlr_autoresume_termination(iteration, model, optimizer,
609
                                              lr_scheduler)
610
611
612
613
614
615

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
616
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
617
                                       iteration, False)
618

619
620
621
622
623
624
625
626
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
643
        if args.exit_interval and iteration % args.exit_interval == 0:
Mostofa Patwary's avatar
Mostofa Patwary committed
644
645
646
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
647
            torch.distributed.barrier()
648
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
649
            sys.exit()
650

651

mohammad's avatar
mohammad committed
652
    return iteration
653
654


Mohammad's avatar
Mohammad committed
655
def evaluate(forward_step_func, data_iterator, model, verbose=False):
656
    """Evaluation."""
Mohammad's avatar
Mohammad committed
657
    args = get_args()
658
659

    # Turn on evaluation mode which disables dropout.
660
661
    for model_module in model:
        model_module.eval()
662
663
664
665
666
667
668
669
670
671

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
672

673
674
675
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
676
                else:
677
                    forward_backward_func = forward_backward_pipelining_without_interleaving
678
679
680
681
682
683
684
685
686
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
687
                    for key in loss_dict:
688
689
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
690

691
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
692
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
693
                                           * get_num_microbatches()
694
    # Move model back to the train mode.
695
696
    for model_module in model:
        model_module.train()
697
698

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
699
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
700
701
702
703
704

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
705
                               iteration, verbose=False):
706
    """Helper function to evaluate and dump results on screen."""
707
    args = get_args()
Mohammad's avatar
Mohammad committed
708
709
710
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
711
712
713
714
715
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
716
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
717
            writer.add_scalar('{} validation'.format(key),
718
719
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
720
            writer.add_scalar('{} validation vs samples'.format(key),
721
722
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
723
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
724
                writer.add_scalar('{} validation ppl'.format(key), ppl,
725
                                  iteration)
mohammad's avatar
mohammad committed
726
                writer.add_scalar('{} validation ppl vs samples'.format(key),
727
                                  ppl, args.consumed_train_samples)
728
729

    length = len(string) + 1
730
731
732
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
733
734


Vijay Korthikanti's avatar
Vijay Korthikanti committed
735
def cyclic_iter(iter):
736
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
737
        for x in iter:
738
739
            yield x

740
741
742
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
743
    args = get_args()
744

745
746
747
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
748
749
750

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
751
752
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
753
        args.consumed_train_samples = args.iteration * args.global_batch_size
754
    if args.iteration > 0 and args.consumed_valid_samples == 0:
755
756
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
757
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
758
            args.eval_iters * args.global_batch_size
759

760
    # Data loader only on rank 0 of each model parallel group.
761
    if mpu.get_tensor_model_parallel_rank() == 0:
762
763

        # Number of train/valid/test samples.
764
765
766
767
768
769
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
770
        test_iters = args.eval_iters
771
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
772
773
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
774
775
776
777
778
779
780
781
782
783
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
784
785
786
787
788
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
789
790
791
792
793
794
795
796
797
798
799
800
801

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
802
803
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
804
805
806
807
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
808

809
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
810
811
812
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

813
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
814
815
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
816
817
818
    else:
        train_data_iterator = None

819
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
820
821
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
822
    else:
823
        valid_data_iterator = None
824

825
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
826
827
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
828
829
830
    else:
        test_data_iterator = None

831
    return train_data_iterator, valid_data_iterator, test_data_iterator