training.py 41.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.data.data_loaders import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.utils import report_memory
52
53


54
55
56
57
58
59
60
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


61
def pretrain(train_valid_test_dataset_provider, model_provider,
62
             forward_step_func, extra_args_provider=None, args_defaults={}):
63
64
65
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
66
67
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
68
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
69
        4) train the modle using the forward_step_func.
70
71

    Arguments:
72
73
74
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
75
76
77
78
79
80
81
82
83
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
85
86
    """

87
    # Initalize and get arguments, timers, and Tensorboard writer.
88
89
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
90

91
92
93
94
95
96
97
98
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
99
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
100
101
102
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

103
    args = get_args()
Mohammad's avatar
Mohammad committed
104
    timers = get_timers()
105
106

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
107
108
109
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
110
111
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
112
113

    # Data stuff.
114
115
116
117
118
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
119
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
120
121
122

    # Print setup timing.
    print_rank_0('done with setups ...')
123
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
124
    print_rank_0('training ...')
125
126

    iteration = 0
127
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
128
129
130
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
131
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
132

133
134
135
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
136
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
137
                                   iteration, False)
138
139

    if args.save and iteration != 0:
140
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
141
142
143
144
145
146

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
147
                                   0, True)
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
165
166
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
167
168
            iterations += 1
        # Reset
169
        update_num_microbatches(0, consistency_check=False)
170
171
172
173
174
175
176
177
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

178

Mohammad's avatar
Mohammad committed
179
def get_model(model_provider_func):
180
    """Build the model."""
Mohammad's avatar
Mohammad committed
181
    args = get_args()
182
183

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
184
    model = model_provider_func()
185

186
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
187
188
189
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
190
191
192
    for param in model.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

193
194
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
195
        print(' > number of parameters on (tensor, pipeline) '
196
              'model parallel rank ({}, {}): {}'.format(
197
198
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
199
200
201
202
203
204
205
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
206
        model = FP16Module(model)
207
208
209

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
210
211
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
212
213
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
214
        model = LocalDDP(model)
215
216
        return model

217
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
218
                              'Exiting.'.format(args.DDP_impl))
219
220


Mohammad's avatar
Mohammad committed
221
def get_learning_rate_scheduler(optimizer):
222
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
223
    args = get_args()
224

225
226
227
228
229
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
230
231
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
232
233
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
234
235
236
237
238
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
239
        update_train_iters(args)
240
241
242
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
243
244
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
245
246
        else:
            warmup_steps = args.lr_warmup_samples
247
    else:
248
249
250
        raise Exception(
            'either train-iters or train-samples should be provided.')

251
252
    lr_scheduler = AnnealingLR(
        optimizer,
253
        max_lr=args.lr,
254
        min_lr=args.min_lr,
255
256
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
257
        decay_style=args.lr_decay_style,
258
259
260
261
262
263
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
264
def setup_model_and_optimizer(model_provider_func):
265
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
266
    args = get_args()
267

Mohammad's avatar
Mohammad committed
268
    model = get_model(model_provider_func)
269
270

    unwrapped_model = model
271
    while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
272
273
274
        unwrapped_model = unwrapped_model.module
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
275
    lr_scheduler = get_learning_rate_scheduler(optimizer)
276
277

    if args.load is not None:
278
279
280
281
282
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
283
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
284
285
286
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
287
288
289
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
290
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
291
292
293
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
294
295
296
297
298
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

299
300
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
301
        print("Initializing ICT from pretrained BERT model", flush=True)
302
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
303

304
305
306
    return model, optimizer, lr_scheduler


307
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
308
    """Communicate tensors between stages."""
309
310
311
312
313
314
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
315
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
316
317
318
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
319
320
321
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
322
                                       device=torch.cuda.current_device(),
323
                                       dtype=dtype)
324
325
326
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
327
                                       device=torch.cuda.current_device(),
328
                                       dtype=dtype)
329
330

    # Send tensors in both the forward and backward directions as appropriate.
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    ops = []
    if tensor_send_prev is not None:
        send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(send_prev_op)
    if tensor_recv_prev is not None:
        recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(recv_prev_op)
    if tensor_send_next is not None:
        send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(send_next_op)
    if tensor_recv_next is not None:
        recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(recv_next_op)
    reqs = torch.distributed.batch_isend_irecv(ops)
    for req in reqs:
        req.wait()
351
352
353
354
355

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
356
    """Backward step."""
Mohammad's avatar
Mohammad committed
357
358
    args = get_args()
    timers = get_timers()
359

360
361
362
363
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

364
    # Backward pass.
mohammad's avatar
mohammad committed
365
366
367
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
368
369
370
371
372
373
374
375
376

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


377
378
379
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
380
381
    args = get_args()

382
    if not mpu.is_pipeline_first_stage():
383
        timers('forward-recv').start()
384
385
386
387
388
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
389
        timers('forward-recv').stop()
390
391
392
393
    else:
        input_tensor = None

    # Forward model for one step.
394
    timers('forward-compute').start()
395
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
396
    timers('forward-compute').stop()
397
398
399

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
400
        output_tensor = loss / get_num_microbatches()
401
402
        losses_reduced.append(loss_reduced)
    else:
403
        timers('forward-send').start()
404
405
406
407
408
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
409
        timers('forward-send').stop()
410
411
412
413
414
415
416
417
418
419
420
421

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
422
        timers('backward-recv').start()
423
424
425
426
427
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
428
        timers('backward-recv').stop()
429
430

    # Backward pass for one step.
431
    timers('backward-compute').start()
432
433
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
434
    timers('backward-compute').stop()
435
436

    if not mpu.is_pipeline_first_stage():
437
        timers('backward-send').start()
438
439
440
441
442
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
443
        timers('backward-send').stop()
444
445


446
447
448
449
450
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
451
452
    args = get_args()

453
454
455
456
457
458
459
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
460
        output_tensor = loss / get_num_microbatches()
461
462
463
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
464
        timers('forward-send-backward-recv').start()
465
466
467
468
469
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
470
        timers('forward-send-backward-recv').stop()
471
472
473
474
475
476
477
478
479
480
481
482
483
484

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
485
        timers('backward-send-forward-recv').start()
486
487
488
489
490
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
491
        timers('backward-send-forward-recv').stop()
492
493
494
495
496
497
    else:
        input_tensor = None

    return input_tensor


498
499
500
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
501
502
    args = get_args()

503
    losses_reduced = []
mohammad's avatar
mohammad committed
504
    for i in range(get_num_microbatches()):
505
506
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
507
        output_tensor = loss / get_num_microbatches()
508
509
510
511
512
513
514
515
516
517
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
518

519
520
521
522
523
524
525

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
526
    num_microbatches = get_num_microbatches()
527
528
529
530
531
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
532
533
534
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
535
536
537
538
539

    input_tensors = []
    output_tensors = []
    losses_reduced = []

540
541
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
542
543
544
545
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
546

547
    # Before running 1F1B, need to receive first forward tensor.
548
549
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
550
    if num_microbatches_remaining > 0:
551
552
553
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
554
            timers('forward-recv').start()
555
556
557
558
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
559
            timers('forward-recv').stop()
560
561

    # Run 1F1B.
562
563
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
564
565
566
567
568
569
570
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

571
572
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
573
574
575
576
577
578
579
580
581
582
583
584
585
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
586
    optimizer.zero_grad()
587
588
589
590
591
592
593

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
594
595
596

    # All-reduce if needed.
    if args.DDP_impl == 'local':
597
        timers('backward-params-all-reduce').start()
598
599
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
600
        timers('backward-params-all-reduce').stop()
601

602
603
604
605
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
606
    timers('backward-embedding-all-reduce').start()
607
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
608
            mpu.get_pipeline_model_parallel_world_size() > 1:
609
        unwrapped_model = model
610
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
611
612
            unwrapped_model = unwrapped_model.module

613
614
615
616
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
617
    timers('backward-embedding-all-reduce').stop()
618

619
620
    # Update parameters.
    timers('optimizer').start()
621
    update_successfull, grad_norm = optimizer.step()
622
623
624
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
625
    if update_successfull:
626
627
628
629
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
630
        skipped_iter = 0
631
632
633
    else:
        skipped_iter = 1

634
    if mpu.is_pipeline_last_stage():
635
636
637
638
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
639
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
640
641
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
642
643


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
644
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
645
646
                 loss_scale, report_memory_flag, skipped_iter,
                 grad_norm, params_norm):
Mohammad's avatar
Mohammad committed
647
648
649
650
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
651

mohammad's avatar
mohammad committed
652
653
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
654
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
655
656
657
658
659
660
661
662
663
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
664
665
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
666
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
667
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
    for key in loss_dict:
mohammad's avatar
mohammad committed
669
        if not skipped_iter:
670
671
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
672
673
674
675
676
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
677
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
678
679
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
680
681
682

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
683

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
684
685
686
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
687
688
689
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
690
    add_to_logging('forward-send-backward-recv')
691
692
693
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
694
    add_to_logging('backward-send-forward-recv')
695
    add_to_logging('backward-params-all-reduce')
696
    add_to_logging('backward-embedding-all-reduce')
697
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
698
    add_to_logging('optimizer-unscale-and-check-inf')
699
700
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
701
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
702
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
703

mohammad's avatar
mohammad committed
704
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
705
706
707
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
708
709
710
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
711
    # Tensorboard values.
mohammad's avatar
mohammad committed
712
713
714
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
715
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
716
717
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
718
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
719
        for key in loss_dict:
mohammad's avatar
mohammad committed
720
721
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
722
                              args.consumed_train_samples)
723
724
725
        writer.add_scalar('loss-scale', loss_scale, iteration)
        writer.add_scalar('loss-scale vs samples', loss_scale,
                          args.consumed_train_samples)
726
727
728
729
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
730
731
732
733
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
734
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
735
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
736
737
738

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
739
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
740
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
741
742
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
743
744
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
745
        log_string += ' consumed samples: {:12d} |'.format(
746
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
747
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
748
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
749
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
750
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
751
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
752
753
754
755
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
756
757
758
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
759
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
760
761
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
762
763
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
764
765
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
766
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
767
768
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
769
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
770
        total_loss_dict[nan_iters_key] = 0
771
        print_rank_last(log_string)
772
773
774
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
775
776
777
778
779
780
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


781
782
783
784
785
786
787
788
789
790
791
792
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


793
def train(forward_step_func, model, optimizer, lr_scheduler,
794
          train_data_iterator, valid_data_iterator):
795
    """Train the model function."""
Mohammad's avatar
Mohammad committed
796
797
    args = get_args()
    timers = get_timers()
798

799
800
801
    # Write args to tensorboard
    write_args_to_tensorboard()

802
803
804
805
806
807
808
809
810
811
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
812
    print_datetime('before the start of training step')
813
814
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
815
        update_num_microbatches(args.consumed_train_samples)
816
817
818
819
820
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
821
        iteration += 1
822
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
823
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
824
                                       get_num_microbatches()
825
826

        # Logging.
827
        loss_scale = optimizer.get_loss_scale().item()
mohammad's avatar
mohammad committed
828
        params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
829
830
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
831
                                          iteration, loss_scale,
832
                                          report_memory_flag, skipped_iter,
mohammad's avatar
mohammad committed
833
                                          grad_norm, params_norm)
834
835

        # Autoresume
836
837
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
838
            check_adlr_autoresume_termination(iteration, model, optimizer,
839
                                              lr_scheduler)
840
841
842
843
844
845

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
846
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
847
                                       iteration, False)
848

849
850
851
852
853
854
855
856
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
873
        if args.exit_interval and iteration % args.exit_interval == 0:
874
875
876
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
877
            torch.distributed.barrier()
878
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
879
            sys.exit()
880

881

mohammad's avatar
mohammad committed
882
    return iteration
883
884


Mohammad's avatar
Mohammad committed
885
def evaluate(forward_step_func, data_iterator, model, verbose=False):
886
    """Evaluation."""
Mohammad's avatar
Mohammad committed
887
    args = get_args()
888
889
890
891
892
893
894
895
896
897
898
899
900

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
901

mohammad's avatar
mohammad committed
902
            for _ in range(get_num_microbatches()):
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
927

928
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
929
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
930
                                           * get_num_microbatches()
931
932
933
934
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
935
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
936
937
938
939
940

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
941
                               iteration, verbose=False):
942
    """Helper function to evaluate and dump results on screen."""
943
    args = get_args()
Mohammad's avatar
Mohammad committed
944
945
946
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
947
948
949
950
951
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
952
953
        if writer and is_last_rank():
            writer.add_scalar('{} value-validation'.format(key),
954
955
                              total_loss_dict[key].item(),
                              iteration)
956
957
958
959
960
961
            writer.add_scalar('{} ppl-validation'.format(key), ppl, iteration)
            writer.add_scalar('{} value-validation vs samples'.format(key),
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
            writer.add_scalar('{} ppl-validation vs samples'.format(key), ppl,
                              args.consumed_train_samples)
962
963

    length = len(string) + 1
964
965
966
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
967
968


969
970
971
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
972
    args = get_args()
973

974
975
976
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
977
978
979

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
980
981
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
982
        args.consumed_train_samples = args.iteration * args.global_batch_size
983
    if args.iteration > 0 and args.consumed_valid_samples == 0:
984
985
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
986
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
987
            args.eval_iters * args.global_batch_size
988

989
    # Data loader only on rank 0 of each model parallel group.
990
    if mpu.get_tensor_model_parallel_rank() == 0:
991
992

        # Number of train/valid/test samples.
993
994
995
996
997
998
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
999
        test_iters = args.eval_iters
1000
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
1001
1002
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1013
1014
1015
1016
1017
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1031
1032
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1033
1034
1035
1036
1037
1038
1039
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1040
1041
1042
    else:
        train_data_iterator = None

1043
1044
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1045
    else:
1046
        valid_data_iterator = None
1047

1048
1049
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1050
1051
1052
    else:
        test_data_iterator = None

1053
    return train_data_iterator, valid_data_iterator, test_data_iterator