"vscode:/vscode.git/clone" did not exist on "aa760cafba48803cc363fd5ce8c2ee429bfd5761"
test_modeling_utils.py 29.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

patil-suraj's avatar
patil-suraj committed
16
import inspect
17
import math
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
import PIL
Patrick von Platen's avatar
Patrick von Platen committed
25
from diffusers import UNet2DConditionModel  # noqa: F401 TODO(Patrick) - need to write tests with it
Patrick von Platen's avatar
Patrick von Platen committed
26
from diffusers import (
patil-suraj's avatar
patil-suraj committed
27
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
28
    DDIMPipeline,
29
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
30
    DDPMPipeline,
31
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
32
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
33
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
34
    PNDMPipeline,
35
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
36
37
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    UNet2DModel,
patil-suraj's avatar
patil-suraj committed
39
    VQModel,
40
)
41
from diffusers.configuration_utils import ConfigMixin, register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
42
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
43
from diffusers.testing_utils import floats_tensor, slow, torch_device
44
from diffusers.training_utils import EMAModel
45
46


Patrick von Platen's avatar
Patrick von Platen committed
47
torch.backends.cuda.matmul.allow_tf32 = False
48
49


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


65
66
67
68
69
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
121
122
123
124
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

125
126
127
128
129
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
130
class ModelTesterMixin:
131
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
132
133
134
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
135
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
136
        model.eval()
137
138
139

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
140
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
141
            new_model.to(torch_device)
142

patil-suraj's avatar
patil-suraj committed
143
144
        with torch.no_grad():
            image = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
            if isinstance(image, dict):
                image = image["sample"]

patil-suraj's avatar
patil-suraj committed
148
            new_image = new_model(**inputs_dict)
149

Patrick von Platen's avatar
Patrick von Platen committed
150
151
152
            if isinstance(new_image, dict):
                new_image = new_image["sample"]

patil-suraj's avatar
patil-suraj committed
153
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
154
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
155

patil-suraj's avatar
patil-suraj committed
156
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
157
158
159
160
161
162
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
163
164
165
            if isinstance(first, dict):
                first = first["sample"]

patil-suraj's avatar
patil-suraj committed
166
            second = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
167
168
            if isinstance(second, dict):
                second = second["sample"]
patil-suraj's avatar
patil-suraj committed
169
170
171
172
173
174
175

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
176

patil-suraj's avatar
patil-suraj committed
177
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
178
179
180
181
182
183
184
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
185

Patrick von Platen's avatar
Patrick von Platen committed
186
187
188
            if isinstance(output, dict):
                output = output["sample"]

patil-suraj's avatar
patil-suraj committed
189
        self.assertIsNotNone(output)
190
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
191
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
192

patil-suraj's avatar
patil-suraj committed
193
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
194
195
196
197
198
199
200
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

201
        expected_arg_names = ["sample", "timestep"]
patil-suraj's avatar
patil-suraj committed
202
        self.assertListEqual(arg_names[:2], expected_arg_names)
203

patil-suraj's avatar
patil-suraj committed
204
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
205
206
207
208
209
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
210

patil-suraj's avatar
patil-suraj committed
211
212
213
214
215
216
217
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
218

patil-suraj's avatar
patil-suraj committed
219
220
221
222
223
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
224

patil-suraj's avatar
patil-suraj committed
225
226
        with torch.no_grad():
            output_1 = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
227
228
229
230

            if isinstance(output_1, dict):
                output_1 = output_1["sample"]

patil-suraj's avatar
patil-suraj committed
231
            output_2 = new_model(**inputs_dict)
232

Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
            if isinstance(output_2, dict):
                output_2 = output_2["sample"]

patil-suraj's avatar
patil-suraj committed
236
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
237
238

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
239
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
240

patil-suraj's avatar
patil-suraj committed
241
242
243
244
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248

        if isinstance(output, dict):
            output = output["sample"]

249
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
250
251
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
252

253
254
255
256
257
258
259
260
261
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
262
263
264
265

        if isinstance(output, dict):
            output = output["sample"]

266
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
267
268
269
270
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
271
272

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
273
    model_class = UNet2DModel
patil-suraj's avatar
patil-suraj committed
274
275
276
277
278
279
280
281
282
283

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

284
        return {"sample": noise, "timestep": time_step}
285

patil-suraj's avatar
patil-suraj committed
286
    @property
Patrick von Platen's avatar
Patrick von Platen committed
287
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
288
        return (3, 32, 32)
289

patil-suraj's avatar
patil-suraj committed
290
    @property
Patrick von Platen's avatar
Patrick von Platen committed
291
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
292
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
293
294
295

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
Patrick von Platen's avatar
Patrick von Platen committed
296
297
298
299
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
300
301
            "out_channels": 3,
            "in_channels": 3,
Patrick von Platen's avatar
Patrick von Platen committed
302
303
            "layers_per_block": 2,
            "sample_size": 32,
patil-suraj's avatar
patil-suraj committed
304
305
306
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
307

patil-suraj's avatar
patil-suraj committed
308

Patrick von Platen's avatar
upload  
Patrick von Platen committed
309
310
#    TODO(Patrick) - Re-add this test after having correctly added the final VE checkpoints
#    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
311
#        model = UNet2DModel.from_pretrained("fusing/ddpm_dummy_update", subfolder="unet")
Patrick von Platen's avatar
upload  
Patrick von Platen committed
312
313
314
315
316
317
#        model.eval()
#
#        torch.manual_seed(0)
#        if torch.cuda.is_available():
#            torch.cuda.manual_seed_all(0)
#
Patrick von Platen's avatar
Patrick von Platen committed
318
#        noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
319
320
321
322
323
324
325
326
327
328
#        time_step = torch.tensor([10])
#
#        with torch.no_grad():
#            output = model(noise, time_step)["sample"]
#
#        output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
#        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
# fmt: on
#        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
329
330


patil-suraj's avatar
patil-suraj committed
331
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
332
    model_class = UNet2DModel
patil-suraj's avatar
patil-suraj committed
333
334
335
336
337
338
339
340
341
342

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

343
        return {"sample": noise, "timestep": time_step}
patil-suraj's avatar
patil-suraj committed
344
345

    @property
Patrick von Platen's avatar
Patrick von Platen committed
346
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
347
348
349
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
350
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
351
352
353
354
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
Patrick von Platen's avatar
Patrick von Platen committed
355
            "sample_size": 32,
patil-suraj's avatar
patil-suraj committed
356
357
            "in_channels": 4,
            "out_channels": 4,
Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
361
362
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
patil-suraj's avatar
patil-suraj committed
363
364
365
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
366

patil-suraj's avatar
patil-suraj committed
367
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
368
369
        model, loading_info = UNet2DModel.from_pretrained(
            "/home/patrick/google_checkpoints/unet-ldm-dummy-update", output_loading_info=True
Patrick von Platen's avatar
Patrick von Platen committed
370
        )
Patrick von Platen's avatar
Patrick von Platen committed
371

patil-suraj's avatar
patil-suraj committed
372
        self.assertIsNotNone(model)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
373
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
374
375

        model.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
376
        image = model(**self.dummy_input)["sample"]
patil-suraj's avatar
patil-suraj committed
377
378
379
380

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
381
        model = UNet2DModel.from_pretrained("/home/patrick/google_checkpoints/unet-ldm-dummy-update")
patil-suraj's avatar
patil-suraj committed
382
383
384
385
386
387
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

Patrick von Platen's avatar
Patrick von Platen committed
388
        noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
patil-suraj's avatar
patil-suraj committed
389
390
391
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
392
            output = model(noise, time_step)["sample"]
patil-suraj's avatar
patil-suraj committed
393
394
395
396
397
398
399
400

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
401

Patrick von Platen's avatar
upload  
Patrick von Platen committed
402
403
404
405
406
407
408
409
410
#    TODO(Patrick) - Re-add this test after having cleaned up LDM
#    def test_output_pretrained_spatial_transformer(self):
#        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
#        model.eval()
#
#        torch.manual_seed(0)
#        if torch.cuda.is_available():
#            torch.cuda.manual_seed_all(0)
#
Patrick von Platen's avatar
Patrick von Platen committed
411
#        noise = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
412
413
414
415
416
417
418
419
420
421
422
423
424
#        context = torch.ones((1, 16, 64), dtype=torch.float32)
#        time_step = torch.tensor([10] * noise.shape[0])
#
#        with torch.no_grad():
#            output = model(noise, time_step, context=context)
#
#        output_slice = output[0, -1, -3:, -3:].flatten()
# fmt: off
#        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
# fmt: on
#
#        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
#
Patrick von Platen's avatar
Patrick von Platen committed
425

patil-suraj's avatar
patil-suraj committed
426

427
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
428
    model_class = UNet2DModel
429
430

    @property
Patrick von Platen's avatar
Patrick von Platen committed
431
    def dummy_input(self, sizes=(32, 32)):
432
433
434
435
436
437
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

438
        return {"sample": noise, "timestep": time_step}
439
440

    @property
Patrick von Platen's avatar
Patrick von Platen committed
441
    def input_shape(self):
442
443
444
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
445
    def output_shape(self):
446
447
448
449
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
Patrick von Platen's avatar
Patrick von Platen committed
450
            "block_out_channels": [32, 64, 64, 64],
451
            "in_channels": 3,
Patrick von Platen's avatar
Patrick von Platen committed
452
            "layers_per_block": 1,
453
454
            "out_channels": 3,
            "time_embedding_type": "fourier",
Patrick von Platen's avatar
Patrick von Platen committed
455
            "norm_eps": 1e-6,
456
            "mid_block_scale_factor": math.sqrt(2.0),
Patrick von Platen's avatar
Patrick von Platen committed
457
458
459
460
461
462
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
463
            ],
Patrick von Platen's avatar
Patrick von Platen committed
464
465
466
467
468
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
469
            ],
470
471
472
473
474
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
475
476
        model, loading_info = UNet2DModel.from_pretrained(
            "/home/patrick/google_checkpoints/ncsnpp-celebahq-256", output_loading_info=True
477
        )
478
        self.assertIsNotNone(model)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
479
        self.assertEqual(len(loading_info["missing_keys"]), 0)
480
481

        model.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
482
483
484
485
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)
486
487
488

        assert image is not None, "Make sure output is not None"

489
    def test_output_pretrained_ve_mid(self):
Patrick von Platen's avatar
Patrick von Platen committed
490
        model = UNet2DModel.from_pretrained("/home/patrick/google_checkpoints/ncsnpp-celebahq-256")
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
            output = model(noise, time_step)["sample"]

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

514
    def test_output_pretrained_ve_large(self):
Patrick von Platen's avatar
Patrick von Platen committed
515
        model = UNet2DModel.from_pretrained("/home/patrick/google_checkpoints/ncsnpp-ffhq-ve-dummy-update")
516
517
518
519
520
521
522
523
524
525
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
526
527
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
528
529

        with torch.no_grad():
530
            output = model(noise, time_step)["sample"]
531
532
533

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
534
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
535
536
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
537
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
538
539


patil-suraj's avatar
patil-suraj committed
540
541
542
543
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
Patrick von Platen's avatar
Patrick von Platen committed
544
    def dummy_input(self, sizes=(32, 32)):
patil-suraj's avatar
patil-suraj committed
545
546
547
548
549
        batch_size = 4
        num_channels = 3

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

550
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "in_channels": 3,
566
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
585
586
587
        model, loading_info = VQModel.from_pretrained(
            "/home/patrick/google_checkpoints/vqgan-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
588
        self.assertIsNotNone(model)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
589
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
590
591
592
593
594
595
596

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
597
        model = VQModel.from_pretrained("/home/patrick/google_checkpoints/vqgan-dummy")
patil-suraj's avatar
patil-suraj committed
598
599
600
601
602
603
604
605
606
607
608
609
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
610
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
611
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
612
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
613
614


Patrick von Platen's avatar
Patrick von Platen committed
615
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
616
617
618
619
620
621
622
623
624
625
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

626
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
642
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
643
644
645
646
647
648
649
650
651
652
653
654
655
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
656

patil-suraj's avatar
patil-suraj committed
657
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
658
659
660
        model, loading_info = AutoencoderKL.from_pretrained(
            "/home/patrick/google_checkpoints/autoencoder-kl-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
661
        self.assertIsNotNone(model)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
662
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
663
664
665
666
667
668
669

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
670
        model = AutoencoderKL.from_pretrained("/home/patrick/google_checkpoints/autoencoder-kl-dummy")
patil-suraj's avatar
patil-suraj committed
671
672
673
674
675
676
677
678
679
680
681
682
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
683
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
684
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
685
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
686
687


688
689
690
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
691
692
693
694
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
695
696
            in_channels=3,
            out_channels=3,
Patrick von Platen's avatar
Patrick von Platen committed
697
698
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
699
        )
Patrick von Platen's avatar
Patrick von Platen committed
700
        schedular = DDPMScheduler(num_train_timesteps=10)
701

Patrick von Platen's avatar
Patrick von Platen committed
702
        ddpm = DDPMPipeline(model, schedular)
703
704
705

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
706
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
707
708

        generator = torch.manual_seed(0)
709

anton-l's avatar
anton-l committed
710
        image = ddpm(generator=generator, output_type="numpy")["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
711
        generator = generator.manual_seed(0)
anton-l's avatar
anton-l committed
712
        new_image = new_ddpm(generator=generator, output_type="numpy")["sample"]
713

anton-l's avatar
anton-l committed
714
        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
715
716
717

    @slow
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
718
        model_path = "/home/patrick/google_checkpoints/ddpm-cifar10-32"
719

Patrick von Platen's avatar
Patrick von Platen committed
720
        ddpm = DDPMPipeline.from_pretrained(model_path)
721
722
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

723
724
        ddpm.scheduler.num_timesteps = 10
        ddpm_from_hub.scheduler.num_timesteps = 10
725

Patrick von Platen's avatar
Patrick von Platen committed
726
        generator = torch.manual_seed(0)
727

anton-l's avatar
anton-l committed
728
        image = ddpm(generator=generator, output_type="numpy")["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
729
        generator = generator.manual_seed(0)
anton-l's avatar
anton-l committed
730
        new_image = ddpm_from_hub(generator=generator, output_type="numpy")["sample"]
731

anton-l's avatar
anton-l committed
732
        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
733

734
735
    @slow
    def test_output_format(self):
Patrick von Platen's avatar
Patrick von Platen committed
736
        model_path = "/home/patrick/google_checkpoints/ddpm-cifar10-32"
737
738
739
740
741
742
743
744
745
746
747
748
749

        pipe = DDIMPipeline.from_pretrained(model_path)

        generator = torch.manual_seed(0)
        images = pipe(generator=generator, output_type="numpy")["sample"]
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

        images = pipe(generator=generator, output_type="pil")["sample"]
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

anton-l's avatar
anton-l committed
750
751
752
753
754
        # use PIL by default
        images = pipe(generator=generator)["sample"]
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

Patrick von Platen's avatar
Patrick von Platen committed
755
756
    @slow
    def test_ddpm_cifar10(self):
Patrick von Platen's avatar
Patrick von Platen committed
757
        model_id = "/home/patrick/google_checkpoints/ddpm-cifar10-32"
Patrick von Platen's avatar
Patrick von Platen committed
758

Patrick von Platen's avatar
Patrick von Platen committed
759
        unet = UNet2DModel.from_pretrained(model_id)
760
761
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
762

763
        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
764
765

        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
766
        image = ddpm(generator=generator, output_type="numpy")["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
767

768
        image_slice = image[0, -3:, -3:, -1]
Patrick von Platen's avatar
Patrick von Platen committed
769

770
771
772
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
773
774
775

    @slow
    def test_ddim_lsun(self):
Patrick von Platen's avatar
Patrick von Platen committed
776
        model_id = "/home/patrick/google_checkpoints/ddpm-ema-bedroom-256"
777

Patrick von Platen's avatar
Patrick von Platen committed
778
        unet = UNet2DModel.from_pretrained(model_id)
779
        scheduler = DDIMScheduler.from_config(model_id)
780

781
        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
782
783

        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
784
        image = ddpm(generator=generator, output_type="numpy")["sample"]
785

786
        image_slice = image[0, -3:, -3:, -1]
787

788
789
790
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
791
792
793

    @slow
    def test_ddim_cifar10(self):
Patrick von Platen's avatar
Patrick von Platen committed
794
        model_id = "/home/patrick/google_checkpoints/ddpm-cifar10-32"
Patrick von Platen's avatar
Patrick von Platen committed
795

Patrick von Platen's avatar
Patrick von Platen committed
796
        unet = UNet2DModel.from_pretrained(model_id)
797
        scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
798

799
        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
800
801

        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
802
        image = ddim(generator=generator, eta=0.0, output_type="numpy")["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
803

804
        image_slice = image[0, -3:, -3:, -1]
Patrick von Platen's avatar
Patrick von Platen committed
805

806
807
808
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
patil-suraj's avatar
patil-suraj committed
809

Patrick von Platen's avatar
Patrick von Platen committed
810
811
    @slow
    def test_pndm_cifar10(self):
Patrick von Platen's avatar
Patrick von Platen committed
812
        model_id = "/home/patrick/google_checkpoints/ddpm-cifar10-32"
Patrick von Platen's avatar
Patrick von Platen committed
813

Patrick von Platen's avatar
Patrick von Platen committed
814
        unet = UNet2DModel.from_pretrained(model_id)
815
        scheduler = PNDMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
816

817
        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
818
        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
819
        image = pndm(generator=generator, output_type="numpy")["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
820

821
        image_slice = image[0, -3:, -3:, -1]
Patrick von Platen's avatar
Patrick von Platen committed
822

823
824
825
        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
826

patil-suraj's avatar
patil-suraj committed
827
828
    @slow
    def test_ldm_text2img(self):
Patrick von Platen's avatar
Patrick von Platen committed
829
        ldm = LatentDiffusionPipeline.from_pretrained("/home/patrick/google_checkpoints/ldm-text2im-large-256")
patil-suraj's avatar
patil-suraj committed
830
831
832

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
833
834
835
        image = ldm([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy")[
            "sample"
        ]
patil-suraj's avatar
patil-suraj committed
836

837
        image_slice = image[0, -3:, -3:, -1]
patil-suraj's avatar
patil-suraj committed
838

839
840
841
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
842

patil-suraj's avatar
patil-suraj committed
843
844
    @slow
    def test_ldm_text2img_fast(self):
Patrick von Platen's avatar
Patrick von Platen committed
845
        ldm = LatentDiffusionPipeline.from_pretrained("/home/patrick/google_checkpoints/ldm-text2im-large-256")
patil-suraj's avatar
patil-suraj committed
846
847
848

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
849
        image = ldm([prompt], generator=generator, num_inference_steps=1, output_type="numpy")["sample"]
patil-suraj's avatar
patil-suraj committed
850

851
        image_slice = image[0, -3:, -3:, -1]
patil-suraj's avatar
patil-suraj committed
852

853
854
855
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
patil-suraj's avatar
patil-suraj committed
856

Patrick von Platen's avatar
Patrick von Platen committed
857
858
    @slow
    def test_score_sde_ve_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
859
        model = UNet2DModel.from_pretrained("/home/patrick/google_checkpoints/ncsnpp-church-256")
860
861
862
863
864

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

Patrick von Platen's avatar
Patrick von Platen committed
865
        scheduler = ScoreSdeVeScheduler.from_config("/home/patrick/google_checkpoints/ncsnpp-church-256")
Patrick von Platen's avatar
Patrick von Platen committed
866
867
868

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

869
        torch.manual_seed(0)
anton-l's avatar
anton-l committed
870
        image = sde_ve(num_inference_steps=300, output_type="numpy")["sample"]
Nathan Lambert's avatar
Nathan Lambert committed
871

872
        image_slice = image[0, -3:, -3:, -1]
Patrick von Platen's avatar
Patrick von Platen committed
873

874
875
876
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.64363, 0.5868, 0.3031, 0.2284, 0.7409, 0.3216, 0.25643, 0.6557, 0.2633])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
877

patil-suraj's avatar
patil-suraj committed
878
879
    @slow
    def test_ldm_uncond(self):
Patrick von Platen's avatar
Patrick von Platen committed
880
        ldm = LatentDiffusionUncondPipeline.from_pretrained("/home/patrick/google_checkpoints/ldm-celebahq-256")
patil-suraj's avatar
patil-suraj committed
881
882

        generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
883
        image = ldm(generator=generator, num_inference_steps=5, output_type="numpy")["sample"]
patil-suraj's avatar
patil-suraj committed
884

885
        image_slice = image[0, -3:, -3:, -1]
patil-suraj's avatar
patil-suraj committed
886

887
888
889
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2