test_modeling_utils.py 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
import tempfile
import unittest
patil-suraj's avatar
patil-suraj committed
20
import numpy as np
21
22
23

import torch

24
25
26
27
28
29
30
31
32
33
34
35
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
    LatentDiffusion,
    PNDMScheduler,
    UNetModel,
)
36
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
37
from diffusers.pipeline_utils import DiffusionPipeline
38
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
39
from diffusers.testing_utils import floats_tensor, slow, torch_device
40
41


Patrick von Platen's avatar
Patrick von Platen committed
42
torch.backends.cuda.matmul.allow_tf32 = False
43
44


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
62
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
81
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

82
83
84
85
86
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
87
class ModelTesterMixin:
88
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
89
90
91
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
92
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
93
        model.eval()
94
95
96
97

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
98
            new_model.to(torch_device)
99

patil-suraj's avatar
patil-suraj committed
100
101
102
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
103

patil-suraj's avatar
patil-suraj committed
104
105
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
patil-suraj's avatar
patil-suraj committed
106
107
    
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
patil-suraj's avatar
patil-suraj committed
122
123
    
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
124
125
126
127
128
129
130
131
132
133
134
135
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
        
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
        
patil-suraj's avatar
patil-suraj committed
136
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
137
138
139
140
141
142
143
144
145
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
patil-suraj's avatar
patil-suraj committed
146
147
    
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
        
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
        
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
        
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
173
174

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
175
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
176

patil-suraj's avatar
patil-suraj committed
177
178
179
180
181
182
183
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
        noise = torch.randn(inputs_dict["x"].shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
184

patil-suraj's avatar
patil-suraj committed
185
186
187
188
189
190
191
192
193
194
195
196
197

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
198
        return {"x": noise, "timesteps": time_step}
patil-suraj's avatar
patil-suraj committed
199
200
201
202
203
204
205
206
207
208
209
210
211

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
    
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
212
213
214
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
215

patil-suraj's avatar
patil-suraj committed
216
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
217
218
219
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
patil-suraj's avatar
patil-suraj committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
        
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        print(noise.shape)
        time_step = torch.tensor([10])
        
        with torch.no_grad():
            output = model(noise, time_step)
        
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([ 0.2891, -0.1899,  0.2595, -0.6214,  0.0968, -0.2622,  0.4688,  0.1311, 0.0053])
        # fmt: on
        print(output_slice)
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
243
244


245
246
247
248
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
249
        schedular = DDPMScheduler(timesteps=10)
250
251
252
253
254
255

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
256
257

        generator = torch.manual_seed(0)
258

patil-suraj's avatar
patil-suraj committed
259
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
260
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
261
        new_image = new_ddpm(generator=generator)
262
263
264
265
266
267
268
269
270
271
272
273
274

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
275
        generator = torch.manual_seed(0)
276

patil-suraj's avatar
patil-suraj committed
277
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
278
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
279
        new_image = ddpm_from_hub(generator=generator)
280
281

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
282
283
284
285
286
287

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
288
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
289
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
290
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
291
292

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
293
294
295
296
297
298
299
300
301
302
303
304
305
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
306
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
307
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
308
309

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
314
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
318
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
319

Patrick von Platen's avatar
Patrick von Platen committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()
        print(image_slice.shape)

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
353
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
354

anton-l's avatar
anton-l committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

370
371
372
373
374
375
376
377
378
379
380
381
382
383
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
384
            _ = DiffusionPipeline.from_pretrained(tmpdirname)