"src/array/cuda/csr2coo.hip" did not exist on "90a103e75290571858e9ddc6bd2e29e81851282a"
test_modeling_utils.py 7.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
20
import os
from distutils.util import strtobool
21
22
23

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
24
from diffusers import GaussianDDPMScheduler, UNetModel
25
26
27


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
torch_device = "cuda" if torch.cuda.is_available() else "cpu"


def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
77
78
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
79
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
86
87
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

88
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
89
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
90
91
92
93
94

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
95
        dummy_input = self.dummy_input
96

Patrick von Platen's avatar
Patrick von Platen committed
97
98
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
99
100

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
105
106
107

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
108
109
110
111


class SamplerTesterMixin(unittest.TestCase):

Patrick von Platen's avatar
improve  
Patrick von Platen committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    @slow
    def test_sample(self):
        generator = torch.Generator()
        generator = generator.manual_seed(6694729458485568)

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
            clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
            clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
            pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
            pred_mean = torch.clamp(pred_mean, -1, 1)
            prev_image = clip_coeff * pred_mean + image_coeff * image

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
        assert (image_slice - torch.tensor([[-0.0598, -0.0611, -0.0506], [-0.0726, 0.0220, 0.0103], [-0.0723, -0.1310, -0.2458]])).abs().sum() < 1e-3

    def test_sample_fast(self):
        # 1. Load models
        generator = torch.Generator()
        generator = generator.manual_seed(6694729458485568)

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
171
        torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
            clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
            clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
            pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
            pred_mean = torch.clamp(pred_mean, -1, 1)
            prev_image = clip_coeff * pred_mean + image_coeff * image

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
        assert (image_slice - torch.tensor([[0.1746, 0.5125, -0.7920], [-0.5734, -0.2910, -0.1984], [0.4090, -0.7740, -0.3941]])).abs().sum() < 1e-3