Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
3986741b
Commit
3986741b
authored
Jun 27, 2022
by
Patrick von Platen
Browse files
add another ldm fast test
parent
6846ee2a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
76 additions
and
53 deletions
+76
-53
src/diffusers/models/unet_ldm.py
src/diffusers/models/unet_ldm.py
+54
-53
tests/test_modeling_utils.py
tests/test_modeling_utils.py
+22
-0
No files found.
src/diffusers/models/unet_ldm.py
View file @
3986741b
...
...
@@ -81,61 +81,62 @@ def Normalize(in_channels):
return
torch
.
nn
.
GroupNorm
(
num_groups
=
32
,
num_channels
=
in_channels
,
eps
=
1e-6
,
affine
=
True
)
class
LinearAttention
(
nn
.
Module
):
def
__init__
(
self
,
dim
,
heads
=
4
,
dim_head
=
32
):
super
().
__init__
()
self
.
heads
=
heads
hidden_dim
=
dim_head
*
heads
self
.
to_qkv
=
nn
.
Conv2d
(
dim
,
hidden_dim
*
3
,
1
,
bias
=
False
)
self
.
to_out
=
nn
.
Conv2d
(
hidden_dim
,
dim
,
1
)
def
forward
(
self
,
x
):
b
,
c
,
h
,
w
=
x
.
shape
qkv
=
self
.
to_qkv
(
x
)
q
,
k
,
v
=
rearrange
(
qkv
,
"b (qkv heads c) h w -> qkv b heads c (h w)"
,
heads
=
self
.
heads
,
qkv
=
3
)
k
=
k
.
softmax
(
dim
=-
1
)
context
=
torch
.
einsum
(
"bhdn,bhen->bhde"
,
k
,
v
)
out
=
torch
.
einsum
(
"bhde,bhdn->bhen"
,
context
,
q
)
out
=
rearrange
(
out
,
"b heads c (h w) -> b (heads c) h w"
,
heads
=
self
.
heads
,
h
=
h
,
w
=
w
)
return
self
.
to_out
(
out
)
class
SpatialSelfAttention
(
nn
.
Module
):
def
__init__
(
self
,
in_channels
):
super
().
__init__
()
self
.
in_channels
=
in_channels
self
.
norm
=
Normalize
(
in_channels
)
self
.
q
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
k
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
v
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
proj_out
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
def
forward
(
self
,
x
):
h_
=
x
h_
=
self
.
norm
(
h_
)
q
=
self
.
q
(
h_
)
k
=
self
.
k
(
h_
)
v
=
self
.
v
(
h_
)
#class LinearAttention(nn.Module):
# def __init__(self, dim, heads=4, dim_head=32):
# super().__init__()
# self.heads = heads
# hidden_dim = dim_head * heads
# self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
# self.to_out = nn.Conv2d(hidden_dim, dim, 1)
#
# def forward(self, x):
# b, c, h, w = x.shape
# qkv = self.to_qkv(x)
# q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
# import ipdb; ipdb.set_trace()
# k = k.softmax(dim=-1)
# context = torch.einsum("bhdn,bhen->bhde", k, v)
# out = torch.einsum("bhde,bhdn->bhen", context, q)
# out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
# return self.to_out(out)
#
#class SpatialSelfAttention(nn.Module):
# def __init__(self, in_channels):
# super().__init__()
# self.in_channels = in_channels
#
# self.norm = Normalize(in_channels)
# self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
# self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
#
# def forward(self, x):
# h_ = x
# h_ = self.norm(h_)
# q = self.q(h_)
# k = self.k(h_)
# v = self.v(h_)
#
# compute attention
b
,
c
,
h
,
w
=
q
.
shape
q
=
rearrange
(
q
,
"b c h w -> b (h w) c"
)
k
=
rearrange
(
k
,
"b c h w -> b c (h w)"
)
w_
=
torch
.
einsum
(
"bij,bjk->bik"
,
q
,
k
)
w_
=
w_
*
(
int
(
c
)
**
(
-
0.5
))
w_
=
torch
.
nn
.
functional
.
softmax
(
w_
,
dim
=
2
)
#
b, c, h, w = q.shape
#
q = rearrange(q, "b c h w -> b (h w) c")
#
k = rearrange(k, "b c h w -> b c (h w)")
#
w_ = torch.einsum("bij,bjk->bik", q, k)
#
#
w_ = w_ * (int(c) ** (-0.5))
#
w_ = torch.nn.functional.softmax(w_, dim=2)
#
# attend to values
v
=
rearrange
(
v
,
"b c h w -> b c (h w)"
)
w_
=
rearrange
(
w_
,
"b i j -> b j i"
)
h_
=
torch
.
einsum
(
"bij,bjk->bik"
,
v
,
w_
)
h_
=
rearrange
(
h_
,
"b c (h w) -> b c h w"
,
h
=
h
)
h_
=
self
.
proj_out
(
h_
)
return
x
+
h_
#
v = rearrange(v, "b c h w -> b c (h w)")
#
w_ = rearrange(w_, "b i j -> b j i")
#
h_ = torch.einsum("bij,bjk->bik", v, w_)
#
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
#
h_ = self.proj_out(h_)
#
#
return x + h_
#
class
CrossAttention
(
nn
.
Module
):
def
__init__
(
self
,
query_dim
,
context_dim
=
None
,
heads
=
8
,
dim_head
=
64
,
dropout
=
0.0
):
...
...
tests/test_modeling_utils.py
View file @
3986741b
...
...
@@ -511,6 +511,28 @@ class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
self
.
assertTrue
(
torch
.
allclose
(
output_slice
,
expected_output_slice
,
atol
=
1e-3
))
def
test_output_pretrained_spatial_transformer
(
self
):
model
=
UNetLDMModel
.
from_pretrained
(
"fusing/unet-ldm-dummy-spatial"
)
model
.
eval
()
torch
.
manual_seed
(
0
)
if
torch
.
cuda
.
is_available
():
torch
.
cuda
.
manual_seed_all
(
0
)
noise
=
torch
.
randn
(
1
,
model
.
config
.
in_channels
,
model
.
config
.
image_size
,
model
.
config
.
image_size
)
context
=
torch
.
ones
((
1
,
16
,
64
),
dtype
=
torch
.
float32
)
time_step
=
torch
.
tensor
([
10
]
*
noise
.
shape
[
0
])
with
torch
.
no_grad
():
output
=
model
(
noise
,
time_step
,
context
=
context
)
output_slice
=
output
[
0
,
-
1
,
-
3
:,
-
3
:].
flatten
()
# fmt: off
expected_output_slice
=
torch
.
tensor
([
61.3445
,
56.9005
,
29.4339
,
59.5497
,
60.7375
,
34.1719
,
48.1951
,
42.6569
,
25.0890
])
# fmt: on
self
.
assertTrue
(
torch
.
allclose
(
output_slice
,
expected_output_slice
,
atol
=
1e-3
))
class
UNetGradTTSModelTests
(
ModelTesterMixin
,
unittest
.
TestCase
):
model_class
=
UNetGradTTSModel
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment