test_modeling_utils.py 37.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
import math
19
20
21
import tempfile
import unittest

22
import numpy as np
23
24
import torch

Patrick von Platen's avatar
Patrick von Platen committed
25
from diffusers import (
patil-suraj's avatar
patil-suraj committed
26
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
27
    DDIMPipeline,
28
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
29
    DDPMPipeline,
30
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
31
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
32
33
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
34
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
35
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
36
    NCSNpp,
Patrick von Platen's avatar
Patrick von Platen committed
37
    PNDMPipeline,
38
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
39
40
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
41
42
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
anton-l's avatar
anton-l committed
43
    UNetLDMModel,
44
    UNetUnconditionalModel,
patil-suraj's avatar
patil-suraj committed
45
    VQModel,
46
)
47
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
48
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
49
from diffusers.testing_utils import floats_tensor, slow, torch_device
50
from diffusers.training_utils import EMAModel
51
52


Patrick von Platen's avatar
Patrick von Platen committed
53
torch.backends.cuda.matmul.allow_tf32 = False
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
73
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

93
94
95
96
97
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
98
class ModelTesterMixin:
99
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
100
101
102
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
103
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
104
        model.eval()
105
106
107

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
108
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
109
            new_model.to(torch_device)
110

patil-suraj's avatar
patil-suraj committed
111
112
        with torch.no_grad():
            image = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
            if isinstance(image, dict):
                image = image["sample"]

patil-suraj's avatar
patil-suraj committed
116
            new_image = new_model(**inputs_dict)
117

Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
            if isinstance(new_image, dict):
                new_image = new_image["sample"]

patil-suraj's avatar
patil-suraj committed
121
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
122
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
123

patil-suraj's avatar
patil-suraj committed
124
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
125
126
127
128
129
130
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
            if isinstance(first, dict):
                first = first["sample"]

patil-suraj's avatar
patil-suraj committed
134
            second = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
135
136
            if isinstance(second, dict):
                second = second["sample"]
patil-suraj's avatar
patil-suraj committed
137
138
139
140
141
142
143

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
144

patil-suraj's avatar
patil-suraj committed
145
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
146
147
148
149
150
151
152
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
153

Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
            if isinstance(output, dict):
                output = output["sample"]

patil-suraj's avatar
patil-suraj committed
157
        self.assertIsNotNone(output)
158
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
159
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
160

patil-suraj's avatar
patil-suraj committed
161
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
162
163
164
165
166
167
168
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

169
        expected_arg_names = ["sample", "timestep"]
patil-suraj's avatar
patil-suraj committed
170
        self.assertListEqual(arg_names[:2], expected_arg_names)
171

patil-suraj's avatar
patil-suraj committed
172
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
173
174
175
176
177
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
178

patil-suraj's avatar
patil-suraj committed
179
180
181
182
183
184
185
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
186

patil-suraj's avatar
patil-suraj committed
187
188
189
190
191
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
192

patil-suraj's avatar
patil-suraj committed
193
194
        with torch.no_grad():
            output_1 = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
198

            if isinstance(output_1, dict):
                output_1 = output_1["sample"]

patil-suraj's avatar
patil-suraj committed
199
            output_2 = new_model(**inputs_dict)
200

Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
            if isinstance(output_2, dict):
                output_2 = output_2["sample"]

patil-suraj's avatar
patil-suraj committed
204
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
205
206

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
207
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
208

patil-suraj's avatar
patil-suraj committed
209
210
211
212
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
216

        if isinstance(output, dict):
            output = output["sample"]

217
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
218
219
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
220

221
222
223
224
225
226
227
228
229
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233

        if isinstance(output, dict):
            output = output["sample"]

234
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
235
236
237
238
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
239
240

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
241
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
242
243
244
245
246
247
248
249
250
251

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

252
        return {"sample": noise, "timestep": time_step}
253

patil-suraj's avatar
patil-suraj committed
254
    @property
Patrick von Platen's avatar
Patrick von Platen committed
255
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
256
        return (3, 32, 32)
257

patil-suraj's avatar
patil-suraj committed
258
    @property
Patrick von Platen's avatar
Patrick von Platen committed
259
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
260
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
261
262
263
264
265

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
266
267
268
269
270
271
            "block_channels": (32, 64),
            "down_blocks": ("UNetResDownBlock2D", "UNetResAttnDownBlock2D"),
            "up_blocks": ("UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
            "num_head_channels": None,
            "out_channels": 3,
            "in_channels": 3,
patil-suraj's avatar
patil-suraj committed
272
273
274
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
275
            "image_size": 32,
patil-suraj's avatar
patil-suraj committed
276
277
278
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
279

patil-suraj's avatar
patil-suraj committed
280
    def test_from_pretrained_hub(self):
281
282
283
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/ddpm_dummy", output_loading_info=True, ddpm=True
        )
patil-suraj's avatar
patil-suraj committed
284
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
285
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
286

patil-suraj's avatar
patil-suraj committed
287
        model.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
288
        image = model(**self.dummy_input)["sample"]
patil-suraj's avatar
patil-suraj committed
289
290

        assert image is not None, "Make sure output is not None"
291

patil-suraj's avatar
patil-suraj committed
292
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
293
294
295
296
297
298
299
300
301
302
303
        model = UNetUnconditionalModel.from_pretrained("fusing/ddpm_dummy", ddpm=True)
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10])

        with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
304
            output = model(noise, time_step)["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
305
306
307
308
309
310
311

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

312

Patrick von Platen's avatar
Patrick von Platen committed
313
314
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
315
316
317
318
319
320
321
322
323
324
325
326

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

327
        return {"sample": noise, "timestep": time_step, "low_res": low_res}
328

patil-suraj's avatar
patil-suraj committed
329
    @property
Patrick von Platen's avatar
Patrick von Platen committed
330
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
331
        return (3, 32, 32)
332

patil-suraj's avatar
patil-suraj committed
333
    @property
Patrick von Platen's avatar
Patrick von Platen committed
334
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
335
        return (6, 32, 32)
336

patil-suraj's avatar
patil-suraj committed
337
338
339
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
340
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
341
342
343
344
345
346
347
348
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
349
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
364

patil-suraj's avatar
patil-suraj committed
365
        self.assertIsNotNone(output)
366
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
367
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
368

patil-suraj's avatar
patil-suraj committed
369
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
370
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
371
372
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
373
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
374
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
375
376
377
378
379

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
380

patil-suraj's avatar
patil-suraj committed
381
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
382
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
383
384
385
386

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
387

388
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
389
390
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
391

patil-suraj's avatar
patil-suraj committed
392
393
        with torch.no_grad():
            output = model(noise, time_step, low_res)
394

patil-suraj's avatar
patil-suraj committed
395
396
397
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
398
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
399
400
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
401

anton-l's avatar
anton-l committed
402

Patrick von Platen's avatar
Patrick von Platen committed
403
404
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
405
406
407
408
409
410
411
412
413
414
415
416
417

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

418
        return {"sample": noise, "timestep": time_step, "transformer_out": emb}
419
420

    @property
Patrick von Platen's avatar
Patrick von Platen committed
421
    def input_shape(self):
422
423
424
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
425
    def output_shape(self):
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
458
        expected_shape = inputs_dict["sample"].shape
459
460
461
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
462
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
463
464
465
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
466
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
467
468
469
470
471
472
473

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
474
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
475
476
477
478
479
480
481
482
483
484
485

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

Patrick von Platen's avatar
Patrick von Platen committed
486
        model.to(torch_device)
487
488
489
490
        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
491
        output_slice = output[0, -1, -3:, -3:].cpu().flatten()
492
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
493
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
494
495
496
497
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
498
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
499
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
500
501
502
503
504
505
506
507
508
509

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

510
        return {"sample": noise, "timestep": time_step}
patil-suraj's avatar
patil-suraj committed
511
512

    @property
Patrick von Platen's avatar
Patrick von Platen committed
513
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
514
515
516
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
517
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
518
519
520
521
522
523
524
525
526
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
Patrick von Platen's avatar
Patrick von Platen committed
527
            "block_channels": (32, 64),
528
            "num_head_channels": 32,
patil-suraj's avatar
patil-suraj committed
529
            "conv_resample": True,
530
531
            "down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"),
            "up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"),
Patrick von Platen's avatar
Patrick von Platen committed
532
            "ldm": True,
patil-suraj's avatar
patil-suraj committed
533
534
535
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
536

patil-suraj's avatar
patil-suraj committed
537
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/unet-ldm-dummy", output_loading_info=True, ldm=True
        )
patil-suraj's avatar
patil-suraj committed
541
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
542
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
543
544

        model.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
545
        image = model(**self.dummy_input)["sample"]
patil-suraj's avatar
patil-suraj committed
546
547
548
549

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
550
        model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
patil-suraj's avatar
patil-suraj committed
551
552
553
554
555
556
557
558
559
560
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
561
            output = model(noise, time_step)["sample"]
patil-suraj's avatar
patil-suraj committed
562
563
564
565
566
567
568
569

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def test_output_pretrained_spatial_transformer(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        context = torch.ones((1, 16, 64), dtype=torch.float32)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step, context=context)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
592

593
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
594
    model_class = UNetUnconditionalModel
595
596
597
598
599
600
601
602
603
604

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

605
        return {"sample": noise, "timestep": time_step}
606
607

    @property
Patrick von Platen's avatar
Patrick von Platen committed
608
    def input_shape(self):
609
610
611
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
612
    def output_shape(self):
613
614
615
616
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
            "block_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "resnet_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "resnet_num_groups": None,
            "down_blocks": [
                "UNetResSkipDownBlock2D",
                "UNetResAttnSkipDownBlock2D",
                "UNetResSkipDownBlock2D",
                "UNetResSkipDownBlock2D",
            ],
            "up_blocks": [
                "UNetResSkipUpBlock2D",
                "UNetResSkipUpBlock2D",
                "UNetResAttnSkipUpBlock2D",
                "UNetResSkipUpBlock2D",
            ],
637
638
639
640
641
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
642
643
644
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/ncsnpp-ffhq-ve-dummy", sde=True, output_loading_info=True
        )
645
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
646
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained_ve_small(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-cifar10-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
666
667
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
668
669
670
671
672
673

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
674
        expected_output_slice = torch.tensor([0.1315, 0.0741, 0.0393, 0.0455, 0.0556, 0.0180, -0.0832, -0.0644, -0.0856])
675
676
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
677
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    def test_output_pretrained_ve_mid(self):
        model = UNetUnconditionalModel.from_pretrained("fusing/celebahq_256-ncsnpp-ve", sde=True)
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
            output = model(noise, time_step)["sample"]

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

704
    def test_output_pretrained_ve_large(self):
705
        model = UNetUnconditionalModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy", sde=True)
706
707
708
709
710
711
712
713
714
715
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
716
717
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
718
719

        with torch.no_grad():
720
            output = model(noise, time_step)["sample"]
721
722
723

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
724
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
725
726
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
727
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
728
729

    def test_output_pretrained_vp(self):
Patrick von Platen's avatar
Patrick von Platen committed
730
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
731
732
733
734
735
736
737
738
739
740
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
741
        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
742
        time_step = torch.tensor(batch_size * [9.0]).to(torch_device)
743
744
745
746
747
748

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
749
        expected_output_slice = torch.tensor([0.3303, -0.2275, -2.8872, -0.1309, -1.2861, 3.4567, -1.0083, 2.5325, -1.3866])
750
751
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
752
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
753
754


patil-suraj's avatar
patil-suraj committed
755
756
757
758
759
760
761
762
763
764
765
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

766
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "attn_resolutions": [],
            "in_channels": 3,
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "dropout": 0.0,
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
804
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = VQModel.from_pretrained("fusing/vqgan-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
825
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
826
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
827
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
828
829


patil-suraj's avatar
patil-suraj committed
830
831
832
833
834
835
836
837
838
839
840
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

841
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
patil-suraj's avatar
patil-suraj committed
861
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
862
863
864
865
866
867
868
869
870
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
871

patil-suraj's avatar
patil-suraj committed
872
873
874
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
Patrick von Platen's avatar
Patrick von Platen committed
875
        # self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
896
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
897
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
898
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
899
900


901
902
903
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
904
        model = UNetUnconditionalModel(
Patrick von Platen's avatar
Patrick von Platen committed
905
906
907
908
909
910
911
912
            block_channels=(32, 64),
            num_res_blocks=2,
            attn_resolutions=(16,),
            image_size=32,
            in_channels=3,
            out_channels=3,
            down_blocks=("UNetResDownBlock2D", "UNetResAttnDownBlock2D"),
            up_blocks=("UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
913
        )
Patrick von Platen's avatar
Patrick von Platen committed
914
        schedular = DDPMScheduler(num_train_timesteps=10)
915

Patrick von Platen's avatar
Patrick von Platen committed
916
        ddpm = DDPMPipeline(model, schedular)
917
918
919

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
920
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
921
922

        generator = torch.manual_seed(0)
923

patil-suraj's avatar
patil-suraj committed
924
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
925
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
926
        new_image = new_ddpm(generator=generator)
927
928
929
930
931

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
Lysandre Debut's avatar
Lysandre Debut committed
932
        model_path = "google/ddpm-cifar10"
933

Patrick von Platen's avatar
Patrick von Platen committed
934
        ddpm = DDPMPipeline.from_pretrained(model_path)
935
936
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

937
938
        ddpm.scheduler.num_timesteps = 10
        ddpm_from_hub.scheduler.num_timesteps = 10
939

Patrick von Platen's avatar
Patrick von Platen committed
940
        generator = torch.manual_seed(0)
941

patil-suraj's avatar
patil-suraj committed
942
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
943
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
944
        new_image = ddpm_from_hub(generator=generator)
945
946

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
947
948
949

    @slow
    def test_ddpm_cifar10(self):
Lysandre Debut's avatar
Lysandre Debut committed
950
        model_id = "google/ddpm-cifar10"
Patrick von Platen's avatar
Patrick von Platen committed
951

Lysandre Debut's avatar
Lysandre Debut committed
952
        unet = UNetUnconditionalModel.from_pretrained(model_id)
953
954
        scheduler = DDPMScheduler.from_config(model_id)
        scheduler = scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
955

956
        ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
957
958

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
959
960
961
962
963
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
964
        expected_slice = torch.tensor(
965
966
967
968
969
970
            [-0.1601, -0.2823, -0.6123, -0.2305, -0.3236, -0.4706, -0.1691, -0.2836, -0.3231]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_lsun(self):
Lysandre Debut's avatar
Lysandre Debut committed
971
        model_id = "google/ddpm-lsun-bedroom-ema"
972

Lysandre Debut's avatar
Lysandre Debut committed
973
        unet = UNetUnconditionalModel.from_pretrained(model_id)
974
        scheduler = DDIMScheduler.from_config(model_id)
975

976
        ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
977
978

        generator = torch.manual_seed(0)
979
        image = ddpm(generator=generator)["sample"]
980
981
982
983
984
985

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor(
            [-0.9879, -0.9598, -0.9312, -0.9953, -0.9963, -0.9995, -0.9957, -1.0000, -0.9863]
Patrick von Platen's avatar
Patrick von Platen committed
986
        )
Patrick von Platen's avatar
Patrick von Platen committed
987
988
989
990
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
Lysandre Debut's avatar
Lysandre Debut committed
991
        model_id = "google/ddpm-cifar10"
Patrick von Platen's avatar
Patrick von Platen committed
992

Lysandre Debut's avatar
Lysandre Debut committed
993
        unet = UNetUnconditionalModel.from_pretrained(model_id)
994
        scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
995

996
        ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
997
998

        generator = torch.manual_seed(0)
999
        image = ddim(generator=generator, eta=0.0)["sample"]
Patrick von Platen's avatar
Patrick von Platen committed
1000
1001
1002
1003

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
1004
        expected_slice = torch.tensor(
1005
            [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
Patrick von Platen's avatar
Patrick von Platen committed
1006
        )
Patrick von Platen's avatar
Patrick von Platen committed
1007
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
1008

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
    @slow
    def test_pndm_cifar10(self):
Lysandre Debut's avatar
Lysandre Debut committed
1011
        model_id = "google/ddpm-cifar10"
Patrick von Platen's avatar
Patrick von Platen committed
1012

1013
        unet = UNetUnconditionalModel.from_pretrained(model_id, ddpm=True)
1014
        scheduler = PNDMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
1015

1016
        pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
1017
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1018
1019
1020
1021
1022
1023
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
1024
            [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
Patrick von Platen's avatar
Patrick von Platen committed
1025
1026
1027
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
1028
    @slow
patil-suraj's avatar
patil-suraj committed
1029
    @unittest.skip("Skipping for now as it takes too long")
patil-suraj's avatar
patil-suraj committed
1030
1031
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
1032
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
1033
1034
1035
1036
1037
1038
1039
1040
1041

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
1042
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
1043

patil-suraj's avatar
patil-suraj committed
1044
1045
1046
1047
1048
1049
1050
    @slow
    def test_ldm_text2img_fast(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
1051
        image = ldm([prompt], generator=generator, num_inference_steps=1)
patil-suraj's avatar
patil-suraj committed
1052
1053
1054
1055

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1056
        expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
patil-suraj's avatar
patil-suraj committed
1057
1058
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

anton-l's avatar
anton-l committed
1059
1060
1061
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
1062
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
1074
1075
    @slow
    def test_score_sde_ve_pipeline(self):
1076
1077
1078
1079
1080
1081
        model = UNetUnconditionalModel.from_pretrained("fusing/ffhq_ncsnpp", sde=True)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
1084
1085
        scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp")

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

1086
        torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1087
1088
        image = sde_ve(num_inference_steps=2)

Patrick von Platen's avatar
Patrick von Platen committed
1089
        if model.device.type == "cpu":
Nathan Lambert's avatar
Nathan Lambert committed
1090
1091
1092
1093
1094
1095
1096
            # patrick's cpu
            expected_image_sum = 3384805888.0
            expected_image_mean = 1076.00085

            # m1 mbp
            # expected_image_sum = 3384805376.0
            # expected_image_mean = 1076.000610351562
Patrick von Platen's avatar
Patrick von Platen committed
1097
1098
        else:
            expected_image_sum = 3382849024.0
Nathan Lambert's avatar
Nathan Lambert committed
1099
            expected_image_mean = 1075.3788
Patrick von Platen's avatar
Patrick von Platen committed
1100
1101
1102
1103

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
    @slow
    def test_score_sde_vp_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
1106
1107
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
        scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp")
Patrick von Platen's avatar
Patrick von Platen committed
1108
1109
1110
1111
1112
1113
1114
1115
1116

        sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler)

        torch.manual_seed(0)
        image = sde_vp(num_inference_steps=10)

        expected_image_sum = 4183.2012
        expected_image_mean = 1.3617

Nathan Lambert's avatar
Nathan Lambert committed
1117
1118
1119
1120
        # on m1 mbp
        # expected_image_sum = 4318.6729
        # expected_image_mean = 1.4058

Patrick von Platen's avatar
Patrick von Platen committed
1121
1122
1123
        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

patil-suraj's avatar
patil-suraj committed
1124
1125
    @slow
    def test_ldm_uncond(self):
Patrick von Platen's avatar
Patrick von Platen committed
1126
        ldm = LatentDiffusionUncondPipeline.from_pretrained("CompVis/latent-diffusion-celeba-256")
patil-suraj's avatar
patil-suraj committed
1127
1128

        generator = torch.manual_seed(0)
1129
        image = ldm(generator=generator, num_inference_steps=5)["sample"]
patil-suraj's avatar
patil-suraj committed
1130
1131
1132
1133

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1134
1135
1136
        expected_slice = torch.tensor(
            [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
        )
patil-suraj's avatar
patil-suraj committed
1137
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2