test_modeling_utils.py 16.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
import pytest
25
26
27
28
29
30
31
32
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
33
    GLIDESuperResUNetModel,
34
35
36
37
    LatentDiffusion,
    PNDMScheduler,
    UNetModel,
)
38
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
39
from diffusers.pipeline_utils import DiffusionPipeline
40
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
41
from diffusers.testing_utils import floats_tensor, slow, torch_device
42
43


Patrick von Platen's avatar
Patrick von Platen committed
44
torch.backends.cuda.matmul.allow_tf32 = False
45
46


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
64
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

84
85
86
87
88
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
89
class ModelTesterMixin:
90
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
91
92
93
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
94
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
95
        model.eval()
96
97
98

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
99
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
100
            new_model.to(torch_device)
101

patil-suraj's avatar
patil-suraj committed
102
103
104
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
105

patil-suraj's avatar
patil-suraj committed
106
107
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
108

patil-suraj's avatar
patil-suraj committed
109
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
124

patil-suraj's avatar
patil-suraj committed
125
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
126
127
128
129
130
131
132
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
133

patil-suraj's avatar
patil-suraj committed
134
135
136
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
137

patil-suraj's avatar
patil-suraj committed
138
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
139
140
141
142
143
144
145
146
147
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
148

patil-suraj's avatar
patil-suraj committed
149
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
150
151
152
153
154
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
155

patil-suraj's avatar
patil-suraj committed
156
157
158
159
160
161
162
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
163

patil-suraj's avatar
patil-suraj committed
164
165
166
167
168
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
169

patil-suraj's avatar
patil-suraj committed
170
171
172
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
173

patil-suraj's avatar
patil-suraj committed
174
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
175
176

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
177
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
178

patil-suraj's avatar
patil-suraj committed
179
180
181
182
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
183
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
184
185
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
186

patil-suraj's avatar
patil-suraj committed
187
188
189
190
191
192
193
194
195
196
197
198
199

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
200
        return {"x": noise, "timesteps": time_step}
201

patil-suraj's avatar
patil-suraj committed
202
203
204
    @property
    def get_input_shape(self):
        return (3, 32, 32)
205

patil-suraj's avatar
patil-suraj committed
206
207
208
    @property
    def get_output_shape(self):
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
209
210
211
212
213
214
215
216
217
218
219

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
220

patil-suraj's avatar
patil-suraj committed
221
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
222
223
224
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
225

patil-suraj's avatar
patil-suraj committed
226
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
227
228
229
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
230

patil-suraj's avatar
patil-suraj committed
231
232
233
234
235
236
237
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
238

patil-suraj's avatar
patil-suraj committed
239
240
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
241

patil-suraj's avatar
patil-suraj committed
242
243
        with torch.no_grad():
            output = model(noise, time_step)
244

patil-suraj's avatar
patil-suraj committed
245
246
247
248
249
250
251
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([ 0.2891, -0.1899,  0.2595, -0.6214,  0.0968, -0.2622,  0.4688,  0.1311, 0.0053])
        # fmt: on
        print(output_slice)
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

252

patil-suraj's avatar
patil-suraj committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GLIDESuperResUNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        torch_device = "cpu"

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
270

patil-suraj's avatar
patil-suraj committed
271
272
273
    @property
    def get_input_shape(self):
        return (3, 32, 32)
274

patil-suraj's avatar
patil-suraj committed
275
276
277
    @property
    def get_output_shape(self):
        return (6, 32, 32)
278

patil-suraj's avatar
patil-suraj committed
279
280
281
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
282
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
283
284
285
286
287
288
289
290
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
291
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
306

patil-suraj's avatar
patil-suraj committed
307
308
309
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
310

patil-suraj's avatar
patil-suraj committed
311
    def test_from_pretrained_hub(self):
312
313
314
        model, loading_info = GLIDESuperResUNetModel.from_pretrained(
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
315
316
317
318
319
320
321
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
322

patil-suraj's avatar
patil-suraj committed
323
324
325
326
327
328
    def test_output_pretrained(self):
        model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
329

330
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
331
332
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
333

patil-suraj's avatar
patil-suraj committed
334
335
        with torch.no_grad():
            output = model(noise, time_step, low_res)
336

patil-suraj's avatar
patil-suraj committed
337
338
339
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
340
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
341
342
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
343
344


345
346
347
348
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
349
        schedular = DDPMScheduler(timesteps=10)
350
351
352
353
354
355

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
356
357

        generator = torch.manual_seed(0)
358

patil-suraj's avatar
patil-suraj committed
359
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
360
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
361
        new_image = new_ddpm(generator=generator)
362
363
364
365
366
367
368
369
370
371
372
373
374

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
375
        generator = torch.manual_seed(0)
376

patil-suraj's avatar
patil-suraj committed
377
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
378
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
379
        new_image = ddpm_from_hub(generator=generator)
380
381

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
386
387

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
388
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
389
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
390
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
391
392

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
396
397
398
399
400
401
402
403
404
405
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
406
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
407
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
408
409

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
410
411
412
413
414
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
418
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
419

Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()
        print(image_slice.shape)

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
453
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
454

anton-l's avatar
anton-l committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
484
            _ = DiffusionPipeline.from_pretrained(tmpdirname)