test_modeling_utils.py 34.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

Patrick von Platen's avatar
Patrick von Platen committed
24
from diffusers import (
patil-suraj's avatar
patil-suraj committed
25
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
26
    DDIMPipeline,
27
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
28
    DDPMPipeline,
29
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
30
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
31
32
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
33
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
34
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
35
    NCSNpp,
Patrick von Platen's avatar
Patrick von Platen committed
36
    PNDMPipeline,
37
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
anton-l's avatar
anton-l committed
42
    UNetLDMModel,
43
    UNetUnconditionalModel,
patil-suraj's avatar
patil-suraj committed
44
    VQModel,
45
)
46
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
47
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
48
from diffusers.testing_utils import floats_tensor, slow, torch_device
49
from diffusers.training_utils import EMAModel
50
51


Patrick von Platen's avatar
Patrick von Platen committed
52
torch.backends.cuda.matmul.allow_tf32 = False
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
72
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

92
93
94
95
96
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
97
class ModelTesterMixin:
98
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
99
100
101
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
102
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
103
        model.eval()
104
105
106

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
107
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
108
            new_model.to(torch_device)
109

patil-suraj's avatar
patil-suraj committed
110
111
112
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
113

patil-suraj's avatar
patil-suraj committed
114
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
115
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
116

patil-suraj's avatar
patil-suraj committed
117
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
132

patil-suraj's avatar
patil-suraj committed
133
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
134
135
136
137
138
139
140
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
141

patil-suraj's avatar
patil-suraj committed
142
        self.assertIsNotNone(output)
143
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
144
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
145

patil-suraj's avatar
patil-suraj committed
146
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
147
148
149
150
151
152
153
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

154
        expected_arg_names = ["sample", "timesteps"]
patil-suraj's avatar
patil-suraj committed
155
        self.assertListEqual(arg_names[:2], expected_arg_names)
156

patil-suraj's avatar
patil-suraj committed
157
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
158
159
160
161
162
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
163

patil-suraj's avatar
patil-suraj committed
164
165
166
167
168
169
170
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
171

patil-suraj's avatar
patil-suraj committed
172
173
174
175
176
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
177

patil-suraj's avatar
patil-suraj committed
178
179
180
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
181

patil-suraj's avatar
patil-suraj committed
182
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
183
184

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
185
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
186

patil-suraj's avatar
patil-suraj committed
187
188
189
190
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
191
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
192
193
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
194

195
196
197
198
199
200
201
202
203
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
204
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
205
206
207
208
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
209
210

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
211
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
212
213
214
215
216
217
218
219
220
221

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

222
        return {"sample": noise, "timesteps": time_step}
223

patil-suraj's avatar
patil-suraj committed
224
    @property
Patrick von Platen's avatar
Patrick von Platen committed
225
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
226
        return (3, 32, 32)
227

patil-suraj's avatar
patil-suraj committed
228
    @property
Patrick von Platen's avatar
Patrick von Platen committed
229
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
230
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
231
232
233
234
235

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
236
237
238
239
240
241
            "block_channels": (32, 64),
            "down_blocks": ("UNetResDownBlock2D", "UNetResAttnDownBlock2D"),
            "up_blocks": ("UNetResAttnUpBlock2D", "UNetResUpBlock2D"),
            "num_head_channels": None,
            "out_channels": 3,
            "in_channels": 3,
patil-suraj's avatar
patil-suraj committed
242
243
244
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
245
            "image_size": 32,
patil-suraj's avatar
patil-suraj committed
246
247
248
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
249

patil-suraj's avatar
patil-suraj committed
250
    def test_from_pretrained_hub(self):
251
252
253
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/ddpm_dummy", output_loading_info=True, ddpm=True
        )
patil-suraj's avatar
patil-suraj committed
254
255
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
256

patil-suraj's avatar
patil-suraj committed
257
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
258
259
260
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
261

patil-suraj's avatar
patil-suraj committed
262
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        model = UNetUnconditionalModel.from_pretrained("fusing/ddpm_dummy", ddpm=True)
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

282

Patrick von Platen's avatar
Patrick von Platen committed
283
284
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
285
286
287
288
289
290
291
292
293
294
295
296

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

297
        return {"sample": noise, "timesteps": time_step, "low_res": low_res}
298

patil-suraj's avatar
patil-suraj committed
299
    @property
Patrick von Platen's avatar
Patrick von Platen committed
300
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
301
        return (3, 32, 32)
302

patil-suraj's avatar
patil-suraj committed
303
    @property
Patrick von Platen's avatar
Patrick von Platen committed
304
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
305
        return (6, 32, 32)
306

patil-suraj's avatar
patil-suraj committed
307
308
309
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
310
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
311
312
313
314
315
316
317
318
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
319
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
334

patil-suraj's avatar
patil-suraj committed
335
        self.assertIsNotNone(output)
336
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
337
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
338

patil-suraj's avatar
patil-suraj committed
339
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
340
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
341
342
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
343
344
345
346
347
348
349
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
350

patil-suraj's avatar
patil-suraj committed
351
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
352
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
353
354
355
356

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
357

358
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
359
360
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
361

patil-suraj's avatar
patil-suraj committed
362
363
        with torch.no_grad():
            output = model(noise, time_step, low_res)
364

patil-suraj's avatar
patil-suraj committed
365
366
367
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
368
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
369
370
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
371

anton-l's avatar
anton-l committed
372

Patrick von Platen's avatar
Patrick von Platen committed
373
374
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
375
376
377
378
379
380
381
382
383
384
385
386
387

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

388
        return {"sample": noise, "timesteps": time_step, "transformer_out": emb}
389
390

    @property
Patrick von Platen's avatar
Patrick von Platen committed
391
    def input_shape(self):
392
393
394
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
395
    def output_shape(self):
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
428
        expected_shape = inputs_dict["sample"].shape
429
430
431
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
432
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
433
434
435
436
437
438
439
440
441
442
443
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
444
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
445
446
447
448
449
450
451
452
453
454
455

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

Patrick von Platen's avatar
Patrick von Platen committed
456
        model.to(torch_device)
457
458
459
460
        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
461
        output_slice = output[0, -1, -3:, -3:].cpu().flatten()
462
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
463
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
464
465
466
467
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
468
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
469
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
470
471
472
473
474
475
476
477
478
479

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

480
        return {"sample": noise, "timesteps": time_step}
patil-suraj's avatar
patil-suraj committed
481
482

    @property
Patrick von Platen's avatar
Patrick von Platen committed
483
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
484
485
486
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
487
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
488
489
490
491
492
493
494
495
496
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
Patrick von Platen's avatar
Patrick von Platen committed
497
            "block_channels": (32, 64),
498
            "num_head_channels": 32,
patil-suraj's avatar
patil-suraj committed
499
            "conv_resample": True,
500
501
            "down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"),
            "up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"),
Patrick von Platen's avatar
Patrick von Platen committed
502
            "ldm": True,
patil-suraj's avatar
patil-suraj committed
503
504
505
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
506

patil-suraj's avatar
patil-suraj committed
507
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/unet-ldm-dummy", output_loading_info=True, ldm=True
        )
patil-suraj's avatar
patil-suraj committed
511
512
513
514
515
516
517
518
519
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
520
        model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
patil-suraj's avatar
patil-suraj committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    def test_output_pretrained_spatial_transformer(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        context = torch.ones((1, 16, 64), dtype=torch.float32)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step, context=context)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
562

563
564
565
566
567
568
569
570
571
572
573
574
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = NCSNpp

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

575
        return {"sample": noise, "timesteps": time_step}
576
577

    @property
Patrick von Platen's avatar
Patrick von Platen committed
578
    def input_shape(self):
579
580
581
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
582
    def output_shape(self):
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "ch_mult": [1, 2, 2, 2],
            "nf": 32,
            "fir": True,
            "progressive": "output_skip",
            "progressive_combine": "sum",
            "progressive_input": "input_skip",
            "scale_by_sigma": True,
            "skip_rescale": True,
            "embedding_type": "fourier",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = NCSNpp.from_pretrained("fusing/cifar10-ncsnpp-ve", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained_ve_small(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-cifar10-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
624
625
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
626
627
628
629
630
631

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
632
        expected_output_slice = torch.tensor([0.1315, 0.0741, 0.0393, 0.0455, 0.0556, 0.0180, -0.0832, -0.0644, -0.0856])
633
634
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
635
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
636
637
638
639
640
641
642
643
644
645
646
647
648
649

    def test_output_pretrained_ve_large(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
650
651
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
652
653
654
655
656
657

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
658
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
659
660
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
661
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
662
663

    def test_output_pretrained_vp(self):
Patrick von Platen's avatar
Patrick von Platen committed
664
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
665
666
667
668
669
670
671
672
673
674
675
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
676
        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
677
        time_step = torch.tensor(batch_size * [9.0]).to(torch_device)
678
679
680
681
682
683

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
684
        expected_output_slice = torch.tensor([0.3303, -0.2275, -2.8872, -0.1309, -1.2861, 3.4567, -1.0083, 2.5325, -1.3866])
685
686
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
687
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
688
689


patil-suraj's avatar
patil-suraj committed
690
691
692
693
694
695
696
697
698
699
700
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

701
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "attn_resolutions": [],
            "in_channels": 3,
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "dropout": 0.0,
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = VQModel.from_pretrained("fusing/vqgan-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
760
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
761
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
762
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
763
764


patil-suraj's avatar
patil-suraj committed
765
766
767
768
769
770
771
772
773
774
775
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

776
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
patil-suraj's avatar
patil-suraj committed
796
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
797
798
799
800
801
802
803
804
805
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
806

patil-suraj's avatar
patil-suraj committed
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
831
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
832
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
833
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
834
835


836
837
838
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
839
840
841
        model = UNetUnconditionalModel(
            ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32, ddpm=True
        )
Patrick von Platen's avatar
Patrick von Platen committed
842
        schedular = DDPMScheduler(timesteps=10)
843

Patrick von Platen's avatar
Patrick von Platen committed
844
        ddpm = DDPMPipeline(model, schedular)
845
846
847

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
848
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
849
850

        generator = torch.manual_seed(0)
851

patil-suraj's avatar
patil-suraj committed
852
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
853
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
854
        new_image = new_ddpm(generator=generator)
855
856
857
858
859
860
861

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
862
        ddpm = DDPMPipeline.from_pretrained(model_path)
863
864
865
866
867
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
868
        generator = torch.manual_seed(0)
869

patil-suraj's avatar
patil-suraj committed
870
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
871
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
872
        new_image = ddpm_from_hub(generator=generator)
873
874

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
875
876
877
878
879

    @slow
    def test_ddpm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

880
        unet = UNetUnconditionalModel.from_pretrained(model_id, ddpm=True)
Patrick von Platen's avatar
Patrick von Platen committed
881
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
882
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
883

Patrick von Platen's avatar
Patrick von Platen committed
884
        ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
885
886

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
887
888
889
890
891
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
892
        expected_slice = torch.tensor(
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
            [-0.1601, -0.2823, -0.6123, -0.2305, -0.3236, -0.4706, -0.1691, -0.2836, -0.3231]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_lsun(self):
        model_id = "fusing/ddpm-lsun-bedroom-ema"

        unet = UNetUnconditionalModel.from_pretrained(model_id, ddpm=True)
        noise_scheduler = DDIMScheduler.from_config(model_id)
        noise_scheduler = noise_scheduler.set_format("pt")

        ddpm = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)

        generator = torch.manual_seed(0)
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor(
            [-0.9879, -0.9598, -0.9312, -0.9953, -0.9963, -0.9995, -0.9957, -1.0000, -0.9863]
Patrick von Platen's avatar
Patrick von Platen committed
915
        )
Patrick von Platen's avatar
Patrick von Platen committed
916
917
918
919
920
921
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

922
        unet = UNetUnconditionalModel.from_pretrained(model_id, ddpm=True)
Patrick von Platen's avatar
Patrick von Platen committed
923
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
924

Patrick von Platen's avatar
Patrick von Platen committed
925
        ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
926
927

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
928
929
930
931
932
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
933
        expected_slice = torch.tensor(
934
            [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
Patrick von Platen's avatar
Patrick von Platen committed
935
        )
Patrick von Platen's avatar
Patrick von Platen committed
936
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
937

Patrick von Platen's avatar
Patrick von Platen committed
938
939
940
941
    @slow
    def test_pndm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

942
        unet = UNetUnconditionalModel.from_pretrained(model_id, ddpm=True)
Patrick von Platen's avatar
Patrick von Platen committed
943
944
        noise_scheduler = PNDMScheduler(tensor_format="pt")

Patrick von Platen's avatar
Patrick von Platen committed
945
        pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
946
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
947
948
949
950
951
952
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
953
            [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
Patrick von Platen's avatar
Patrick von Platen committed
954
955
956
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
957
    @slow
patil-suraj's avatar
patil-suraj committed
958
    @unittest.skip("Skipping for now as it takes too long")
patil-suraj's avatar
patil-suraj committed
959
960
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
961
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
962
963
964
965
966
967
968
969
970

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
971
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
972

patil-suraj's avatar
patil-suraj committed
973
974
975
976
977
978
979
    @slow
    def test_ldm_text2img_fast(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
980
        image = ldm([prompt], generator=generator, num_inference_steps=1)
patil-suraj's avatar
patil-suraj committed
981
982
983
984

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
985
        expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
patil-suraj's avatar
patil-suraj committed
986
987
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

anton-l's avatar
anton-l committed
988
989
990
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
991
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
992
993
994
995
996
997
998
999
1000
1001
1002

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
1003
1004
1005
1006
1007
1008
1009
    @slow
    def test_score_sde_ve_pipeline(self):
        model = NCSNpp.from_pretrained("fusing/ffhq_ncsnpp")
        scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp")

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

1010
        torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1011
1012
        image = sde_ve(num_inference_steps=2)

1013
1014
        expected_image_sum = 3382849024.0
        expected_image_mean = 1075.3788
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
1017
1018

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

Patrick von Platen's avatar
Patrick von Platen committed
1019
1020
    @slow
    def test_score_sde_vp_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
        scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp")
Patrick von Platen's avatar
Patrick von Platen committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

        sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler)

        torch.manual_seed(0)
        image = sde_vp(num_inference_steps=10)

        expected_image_sum = 4183.2012
        expected_image_mean = 1.3617

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

patil-suraj's avatar
patil-suraj committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    @slow
    def test_ldm_uncond(self):
        ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256")

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1045
1046
1047
        expected_slice = torch.tensor(
            [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
        )
patil-suraj's avatar
patil-suraj committed
1048
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2