"vscode:/vscode.git/clone" did not exist on "22ff665dcf6914ec77a3a5d906284510bea8e9be"
test_modeling_utils.py 34.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

Patrick von Platen's avatar
Patrick von Platen committed
24
from diffusers import (
patil-suraj's avatar
patil-suraj committed
25
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
26
    DDIMPipeline,
27
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
28
    DDPMPipeline,
29
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
30
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
31
32
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
33
    LatentDiffusionPipeline,
patil-suraj's avatar
patil-suraj committed
34
    LatentDiffusionUncondPipeline,
Patrick von Platen's avatar
Patrick von Platen committed
35
    NCSNpp,
Patrick von Platen's avatar
Patrick von Platen committed
36
    PNDMPipeline,
37
    PNDMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
39
    ScoreSdeVePipeline,
    ScoreSdeVeScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
40
41
    ScoreSdeVpPipeline,
    ScoreSdeVpScheduler,
anton-l's avatar
anton-l committed
42
43
    UNetLDMModel,
    UNetModel,
44
    UNetUnconditionalModel,
patil-suraj's avatar
patil-suraj committed
45
    VQModel,
46
)
47
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
48
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
49
from diffusers.testing_utils import floats_tensor, slow, torch_device
50
from diffusers.training_utils import EMAModel
51
52


Patrick von Platen's avatar
Patrick von Platen committed
53
torch.backends.cuda.matmul.allow_tf32 = False
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
73
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

93
94
95
96
97
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
98
class ModelTesterMixin:
99
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
100
101
102
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
103
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
104
        model.eval()
105
106
107

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
108
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
109
            new_model.to(torch_device)
110

patil-suraj's avatar
patil-suraj committed
111
112
113
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
114

patil-suraj's avatar
patil-suraj committed
115
        max_diff = (image - new_image).abs().sum().item()
Patrick von Platen's avatar
Patrick von Platen committed
116
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
117

patil-suraj's avatar
patil-suraj committed
118
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
133

patil-suraj's avatar
patil-suraj committed
134
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
135
136
137
138
139
140
141
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
142

patil-suraj's avatar
patil-suraj committed
143
        self.assertIsNotNone(output)
144
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
145
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
146

patil-suraj's avatar
patil-suraj committed
147
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
148
149
150
151
152
153
154
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

155
        expected_arg_names = ["sample", "timesteps"]
patil-suraj's avatar
patil-suraj committed
156
        self.assertListEqual(arg_names[:2], expected_arg_names)
157

patil-suraj's avatar
patil-suraj committed
158
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
159
160
161
162
163
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
164

patil-suraj's avatar
patil-suraj committed
165
166
167
168
169
170
171
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
172

patil-suraj's avatar
patil-suraj committed
173
174
175
176
177
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
178

patil-suraj's avatar
patil-suraj committed
179
180
181
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
182

patil-suraj's avatar
patil-suraj committed
183
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
184
185

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
186
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
187

patil-suraj's avatar
patil-suraj committed
188
189
190
191
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
192
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
193
194
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
195

196
197
198
199
200
201
202
203
204
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        ema_model = EMAModel(model, device=torch_device)

        output = model(**inputs_dict)
205
        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
206
207
208
209
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
        ema_model.step(model)

patil-suraj's avatar
patil-suraj committed
210
211
212
213
214
215
216
217
218
219
220
221
222

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

223
        return {"sample": noise, "timesteps": time_step}
224

patil-suraj's avatar
patil-suraj committed
225
    @property
Patrick von Platen's avatar
Patrick von Platen committed
226
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
227
        return (3, 32, 32)
228

patil-suraj's avatar
patil-suraj committed
229
    @property
Patrick von Platen's avatar
Patrick von Platen committed
230
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
231
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
232
233
234
235
236
237
238
239
240
241
242

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
243

patil-suraj's avatar
patil-suraj committed
244
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
245
246
247
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
248

patil-suraj's avatar
patil-suraj committed
249
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
250
251
252
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
253

patil-suraj's avatar
patil-suraj committed
254
255
256
257
258
259
260
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
261

patil-suraj's avatar
patil-suraj committed
262
263
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
264

patil-suraj's avatar
patil-suraj committed
265
266
        with torch.no_grad():
            output = model(noise, time_step)
267

patil-suraj's avatar
patil-suraj committed
268
269
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
270
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
patil-suraj's avatar
patil-suraj committed
271
        # fmt: on
Patrick von Platen's avatar
Patrick von Platen committed
272
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
273

Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        print("Original success!!!")

        model = UNetUnconditionalModel.from_pretrained("fusing/ddpm_dummy", ddpm=True)
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))

295

Patrick von Platen's avatar
Patrick von Platen committed
296
297
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
298
299
300
301
302
303
304
305
306
307
308
309

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

310
        return {"sample": noise, "timesteps": time_step, "low_res": low_res}
311

patil-suraj's avatar
patil-suraj committed
312
    @property
Patrick von Platen's avatar
Patrick von Platen committed
313
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
314
        return (3, 32, 32)
315

patil-suraj's avatar
patil-suraj committed
316
    @property
Patrick von Platen's avatar
Patrick von Platen committed
317
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
318
        return (6, 32, 32)
319

patil-suraj's avatar
patil-suraj committed
320
321
322
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
323
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
324
325
326
327
328
329
330
331
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
332
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
347

patil-suraj's avatar
patil-suraj committed
348
        self.assertIsNotNone(output)
349
        expected_shape = inputs_dict["sample"].shape
patil-suraj's avatar
patil-suraj committed
350
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
351

patil-suraj's avatar
patil-suraj committed
352
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
353
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
354
355
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
356
357
358
359
360
361
362
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
363

patil-suraj's avatar
patil-suraj committed
364
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
365
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
366
367
368
369

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
370

371
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
372
373
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
374

patil-suraj's avatar
patil-suraj committed
375
376
        with torch.no_grad():
            output = model(noise, time_step, low_res)
377

patil-suraj's avatar
patil-suraj committed
378
379
380
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
381
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
382
383
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
384

anton-l's avatar
anton-l committed
385

Patrick von Platen's avatar
Patrick von Platen committed
386
387
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
388
389
390
391
392
393
394
395
396
397
398
399
400

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

401
        return {"sample": noise, "timesteps": time_step, "transformer_out": emb}
402
403

    @property
Patrick von Platen's avatar
Patrick von Platen committed
404
    def input_shape(self):
405
406
407
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
408
    def output_shape(self):
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
441
        expected_shape = inputs_dict["sample"].shape
442
443
444
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
445
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
446
447
448
449
450
451
452
453
454
455
456
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
457
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
458
459
460
461
462
463
464
465
466
467
468

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

Patrick von Platen's avatar
Patrick von Platen committed
469
        model.to(torch_device)
470
471
472
473
        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
474
        output_slice = output[0, -1, -3:, -3:].cpu().flatten()
475
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
476
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
477
478
479
480
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
481
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
482
    model_class = UNetUnconditionalModel
patil-suraj's avatar
patil-suraj committed
483
484
485
486
487
488
489
490
491
492

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

493
        return {"sample": noise, "timesteps": time_step}
patil-suraj's avatar
patil-suraj committed
494
495

    @property
Patrick von Platen's avatar
Patrick von Platen committed
496
    def input_shape(self):
patil-suraj's avatar
patil-suraj committed
497
498
499
        return (4, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
500
    def output_shape(self):
patil-suraj's avatar
patil-suraj committed
501
502
503
504
505
506
507
508
509
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
Patrick von Platen's avatar
Patrick von Platen committed
510
            "block_channels": (32, 64),
511
            "num_head_channels": 32,
patil-suraj's avatar
patil-suraj committed
512
            "conv_resample": True,
513
514
            "down_blocks": ("UNetResDownBlock2D", "UNetResDownBlock2D"),
            "up_blocks": ("UNetResUpBlock2D", "UNetResUpBlock2D"),
Patrick von Platen's avatar
Patrick von Platen committed
515
            "ldm": True,
patil-suraj's avatar
patil-suraj committed
516
517
518
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
519

patil-suraj's avatar
patil-suraj committed
520
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
521
522
523
        model, loading_info = UNetUnconditionalModel.from_pretrained(
            "fusing/unet-ldm-dummy", output_loading_info=True, ldm=True
        )
patil-suraj's avatar
patil-suraj committed
524
525
526
527
528
529
530
531
532
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
533
        model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
patil-suraj's avatar
patil-suraj committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    def test_output_pretrained_spatial_transformer(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy-spatial")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        context = torch.ones((1, 16, 64), dtype=torch.float32)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step, context=context)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([61.3445, 56.9005, 29.4339, 59.5497, 60.7375, 34.1719, 48.1951, 42.6569, 25.0890])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
575

576
577
578
579
580
581
582
583
584
585
586
587
class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = NCSNpp

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [10]).to(torch_device)

588
        return {"sample": noise, "timesteps": time_step}
589
590

    @property
Patrick von Platen's avatar
Patrick von Platen committed
591
    def input_shape(self):
592
593
594
        return (3, 32, 32)

    @property
Patrick von Platen's avatar
Patrick von Platen committed
595
    def output_shape(self):
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "ch_mult": [1, 2, 2, 2],
            "nf": 32,
            "fir": True,
            "progressive": "output_skip",
            "progressive_combine": "sum",
            "progressive_input": "input_skip",
            "scale_by_sigma": True,
            "skip_rescale": True,
            "embedding_type": "fourier",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = NCSNpp.from_pretrained("fusing/cifar10-ncsnpp-ve", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained_ve_small(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-cifar10-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
637
638
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
639
640
641
642
643
644

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
645
        expected_output_slice = torch.tensor([0.1315, 0.0741, 0.0393, 0.0455, 0.0556, 0.0180, -0.0832, -0.0644, -0.0856])
646
647
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
648
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
649
650
651
652
653
654
655
656
657
658
659
660
661
662

    def test_output_pretrained_ve_large(self):
        model = NCSNpp.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy")
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
663
664
        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
665
666
667
668
669
670

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
671
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
672
673
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
674
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
675
676

    def test_output_pretrained_vp(self):
Patrick von Platen's avatar
Patrick von Platen committed
677
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
678
679
680
681
682
683
684
685
686
687
688
        model.eval()
        model.to(torch_device)

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

Patrick von Platen's avatar
Patrick von Platen committed
689
        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
690
        time_step = torch.tensor(batch_size * [9.0]).to(torch_device)
691
692
693
694
695
696

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
697
        expected_output_slice = torch.tensor([0.3303, -0.2275, -2.8872, -0.1309, -1.2861, 3.4567, -1.0083, 2.5325, -1.3866])
698
699
        # fmt: on

Patrick von Platen's avatar
Patrick von Platen committed
700
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
701
702


patil-suraj's avatar
patil-suraj committed
703
704
705
706
707
708
709
710
711
712
713
class VQModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = VQModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

714
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "out_ch": 3,
            "num_res_blocks": 1,
            "attn_resolutions": [],
            "in_channels": 3,
            "resolution": 32,
            "z_channels": 3,
            "n_embed": 256,
            "embed_dim": 3,
            "sane_index_shape": False,
            "ch_mult": (1,),
            "dropout": 0.0,
            "double_z": False,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = VQModel.from_pretrained("fusing/vqgan-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
773
        expected_output_slice = torch.tensor([-1.1321, 0.1056, 0.3505, -0.6461, -0.2014, 0.0419, -0.5763, -0.8462, -0.4218])
patil-suraj's avatar
patil-suraj committed
774
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
775
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
776
777


patil-suraj's avatar
patil-suraj committed
778
779
780
781
782
783
784
785
786
787
788
class AutoEncoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

789
        return {"sample": image}
patil-suraj's avatar
patil-suraj committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 64,
            "ch_mult": (1,),
            "embed_dim": 4,
            "in_channels": 3,
            "num_res_blocks": 1,
            "out_ch": 3,
            "resolution": 32,
            "z_channels": 4,
patil-suraj's avatar
patil-suraj committed
809
            "attn_resolutions": [],
patil-suraj's avatar
patil-suraj committed
810
811
812
813
814
815
816
817
818
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass
patil-suraj's avatar
patil-suraj committed
819

patil-suraj's avatar
patil-suraj committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        image = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        with torch.no_grad():
            output = model(image, sample_posterior=True)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
up  
Patrick von Platen committed
844
        expected_output_slice = torch.tensor([-0.0814, -0.0229, -0.1320, -0.4123, -0.0366, -0.3473, 0.0438, -0.1662, 0.1750])
patil-suraj's avatar
patil-suraj committed
845
        # fmt: on
Patrick von Platen's avatar
up  
Patrick von Platen committed
846
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))
patil-suraj's avatar
patil-suraj committed
847
848


849
850
851
852
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
853
        schedular = DDPMScheduler(timesteps=10)
854

Patrick von Platen's avatar
Patrick von Platen committed
855
        ddpm = DDPMPipeline(model, schedular)
856
857
858

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
859
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
860
861

        generator = torch.manual_seed(0)
862

patil-suraj's avatar
patil-suraj committed
863
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
864
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
865
        new_image = new_ddpm(generator=generator)
866
867
868
869
870
871
872

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
873
        ddpm = DDPMPipeline.from_pretrained(model_path)
874
875
876
877
878
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
879
        generator = torch.manual_seed(0)
880

patil-suraj's avatar
patil-suraj committed
881
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
882
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
883
        new_image = ddpm_from_hub(generator=generator)
884
885

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
886
887
888
889
890

    @slow
    def test_ddpm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
891
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
892
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
893
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
894

Patrick von Platen's avatar
Patrick von Platen committed
895
        ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
896
897

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
898
899
900
901
902
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
903
904
905
        expected_slice = torch.tensor(
            [-0.5712, -0.6215, -0.5953, -0.5438, -0.4775, -0.4539, -0.5172, -0.4872, -0.5105]
        )
Patrick von Platen's avatar
Patrick von Platen committed
906
907
908
909
910
911
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
912
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
913
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
914

Patrick von Platen's avatar
Patrick von Platen committed
915
        ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
916
917

        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
918
919
920
921
922
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
923
        expected_slice = torch.tensor(
924
            [-0.6553, -0.6765, -0.6799, -0.6749, -0.7006, -0.6974, -0.6991, -0.7116, -0.7094]
Patrick von Platen's avatar
Patrick von Platen committed
925
        )
Patrick von Platen's avatar
Patrick von Platen committed
926
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
927

Patrick von Platen's avatar
Patrick von Platen committed
928
929
930
931
932
933
934
    @slow
    def test_pndm_cifar10(self):
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

Patrick von Platen's avatar
Patrick von Platen committed
935
        pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
936
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
937
938
939
940
941
942
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
943
            [-0.6872, -0.7071, -0.7188, -0.7057, -0.7515, -0.7191, -0.7377, -0.7565, -0.7500]
Patrick von Platen's avatar
Patrick von Platen committed
944
945
946
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
947
    @slow
patil-suraj's avatar
patil-suraj committed
948
    @unittest.skip("Skipping for now as it takes too long")
patil-suraj's avatar
patil-suraj committed
949
950
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
951
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
952
953
954
955
956
957
958
959
960

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
961
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
962

patil-suraj's avatar
patil-suraj committed
963
964
965
966
967
968
969
    @slow
    def test_ldm_text2img_fast(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
970
        image = ldm([prompt], generator=generator, num_inference_steps=1)
patil-suraj's avatar
patil-suraj committed
971
972
973
974

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
975
        expected_slice = torch.tensor([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
patil-suraj's avatar
patil-suraj committed
976
977
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

anton-l's avatar
anton-l committed
978
979
980
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
981
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
982
983
984
985
986
987
988
989
990
991
992

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
993
994
995
996
997
998
999
    @slow
    def test_score_sde_ve_pipeline(self):
        model = NCSNpp.from_pretrained("fusing/ffhq_ncsnpp")
        scheduler = ScoreSdeVeScheduler.from_config("fusing/ffhq_ncsnpp")

        sde_ve = ScoreSdeVePipeline(model=model, scheduler=scheduler)

1000
        torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1001
1002
        image = sde_ve(num_inference_steps=2)

1003
1004
        expected_image_sum = 3382849024.0
        expected_image_mean = 1075.3788
Patrick von Platen's avatar
Patrick von Platen committed
1005
1006
1007
1008

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
    @slow
    def test_score_sde_vp_pipeline(self):
Patrick von Platen's avatar
Patrick von Platen committed
1011
1012
        model = NCSNpp.from_pretrained("fusing/cifar10-ddpmpp-vp")
        scheduler = ScoreSdeVpScheduler.from_config("fusing/cifar10-ddpmpp-vp")
Patrick von Platen's avatar
Patrick von Platen committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

        sde_vp = ScoreSdeVpPipeline(model=model, scheduler=scheduler)

        torch.manual_seed(0)
        image = sde_vp(num_inference_steps=10)

        expected_image_sum = 4183.2012
        expected_image_mean = 1.3617

        assert (image.abs().sum() - expected_image_sum).abs().cpu().item() < 1e-2
        assert (image.abs().mean() - expected_image_mean).abs().cpu().item() < 1e-4

patil-suraj's avatar
patil-suraj committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
    @slow
    def test_ldm_uncond(self):
        ldm = LatentDiffusionUncondPipeline.from_pretrained("fusing/latent-diffusion-celeba-256")

        generator = torch.manual_seed(0)
        image = ldm(generator=generator, num_inference_steps=5)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
patil-suraj's avatar
patil-suraj committed
1035
1036
1037
        expected_slice = torch.tensor(
            [-0.1202, -0.1005, -0.0635, -0.0520, -0.1282, -0.0838, -0.0981, -0.1318, -0.1106]
        )
patil-suraj's avatar
patil-suraj committed
1038
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2