test_modeling_utils.py 24.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
from diffusers import (
Patrick von Platen's avatar
Patrick von Platen committed
25
26
    BDDMPipeline,
    DDIMPipeline,
27
    DDIMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
28
    DDPMPipeline,
29
    DDPMScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
30
    GlidePipeline,
Patrick von Platen's avatar
Patrick von Platen committed
31
32
    GlideSuperResUNetModel,
    GlideTextToImageUNetModel,
Patrick von Platen's avatar
Patrick von Platen committed
33
    GradTTSPipeline,
34
    GradTTSScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
35
36
    LatentDiffusionPipeline,
    PNDMPipeline,
37
    PNDMScheduler,
patil-suraj's avatar
patil-suraj committed
38
    UNetGradTTSModel,
anton-l's avatar
anton-l committed
39
40
    UNetLDMModel,
    UNetModel,
41
)
42
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
43
from diffusers.pipeline_utils import DiffusionPipeline
44
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
45
from diffusers.testing_utils import floats_tensor, slow, torch_device
46
47


Patrick von Platen's avatar
Patrick von Platen committed
48
torch.backends.cuda.matmul.allow_tf32 = False
49
50


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
68
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

88
89
90
91
92
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
93
class ModelTesterMixin:
94
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
95
96
97
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
98
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
99
        model.eval()
100
101
102

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
103
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
104
            new_model.to(torch_device)
105

patil-suraj's avatar
patil-suraj committed
106
107
108
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
109

patil-suraj's avatar
patil-suraj committed
110
111
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
112

patil-suraj's avatar
patil-suraj committed
113
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
128

patil-suraj's avatar
patil-suraj committed
129
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
130
131
132
133
134
135
136
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
137

patil-suraj's avatar
patil-suraj committed
138
139
140
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
141

patil-suraj's avatar
patil-suraj committed
142
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
143
144
145
146
147
148
149
150
151
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
152

patil-suraj's avatar
patil-suraj committed
153
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
154
155
156
157
158
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
159

patil-suraj's avatar
patil-suraj committed
160
161
162
163
164
165
166
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
167

patil-suraj's avatar
patil-suraj committed
168
169
170
171
172
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
173

patil-suraj's avatar
patil-suraj committed
174
175
176
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
177

patil-suraj's avatar
patil-suraj committed
178
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
179
180

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
181
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
182

patil-suraj's avatar
patil-suraj committed
183
184
185
186
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
187
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
188
189
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
190

patil-suraj's avatar
patil-suraj committed
191
192
193
194
195
196
197
198
199
200
201
202
203

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
204
        return {"x": noise, "timesteps": time_step}
205

patil-suraj's avatar
patil-suraj committed
206
207
208
    @property
    def get_input_shape(self):
        return (3, 32, 32)
209

patil-suraj's avatar
patil-suraj committed
210
211
212
    @property
    def get_output_shape(self):
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
213
214
215
216
217
218
219
220
221
222
223

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
224

patil-suraj's avatar
patil-suraj committed
225
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
226
227
228
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
229

patil-suraj's avatar
patil-suraj committed
230
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
231
232
233
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
234

patil-suraj's avatar
patil-suraj committed
235
236
237
238
239
240
241
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
242

patil-suraj's avatar
patil-suraj committed
243
244
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
245

patil-suraj's avatar
patil-suraj committed
246
247
        with torch.no_grad():
            output = model(noise, time_step)
248

patil-suraj's avatar
patil-suraj committed
249
250
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
251
        expected_output_slice = torch.tensor([0.2891, -0.1899, 0.2595, -0.6214, 0.0968, -0.2622, 0.4688, 0.1311, 0.0053])
patil-suraj's avatar
patil-suraj committed
252
253
254
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

255

Patrick von Platen's avatar
Patrick von Platen committed
256
257
class GlideSuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideSuperResUNetModel
patil-suraj's avatar
patil-suraj committed
258
259
260
261
262
263
264
265
266
267
268
269
270

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
271

patil-suraj's avatar
patil-suraj committed
272
273
274
    @property
    def get_input_shape(self):
        return (3, 32, 32)
275

patil-suraj's avatar
patil-suraj committed
276
277
278
    @property
    def get_output_shape(self):
        return (6, 32, 32)
279

patil-suraj's avatar
patil-suraj committed
280
281
282
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
283
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
284
285
286
287
288
289
290
291
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
292
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
307

patil-suraj's avatar
patil-suraj committed
308
309
310
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
311

patil-suraj's avatar
patil-suraj committed
312
    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
313
        model, loading_info = GlideSuperResUNetModel.from_pretrained(
314
315
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
316
317
318
319
320
321
322
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
323

patil-suraj's avatar
patil-suraj committed
324
    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
325
        model = GlideSuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")
patil-suraj's avatar
patil-suraj committed
326
327
328
329

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
330

331
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
332
333
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
334

patil-suraj's avatar
patil-suraj committed
335
336
        with torch.no_grad():
            output = model(noise, time_step, low_res)
337

patil-suraj's avatar
patil-suraj committed
338
339
340
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
341
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
342
343
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
344

anton-l's avatar
anton-l committed
345

Patrick von Platen's avatar
Patrick von Platen committed
346
347
class GlideTextToImageUNetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = GlideTextToImageUNetModel
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)
        transformer_dim = 32
        seq_len = 16

        noise = torch.randn((batch_size, num_channels) + sizes).to(torch_device)
        emb = torch.randn((batch_size, seq_len, transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "transformer_out": emb}

    @property
    def get_input_shape(self):
        return (3, 32, 32)

    @property
    def get_output_shape(self):
        return (6, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
            "channel_mult": (1, 2),
            "in_channels": 3,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
            "use_scale_shift_norm": True,
            "transformer_dim": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_from_pretrained_hub(self):
Patrick von Platen's avatar
Patrick von Platen committed
405
        model, loading_info = GlideTextToImageUNetModel.from_pretrained(
406
407
408
409
410
411
412
413
414
415
416
            "fusing/unet-glide-text2im-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
Patrick von Platen's avatar
Patrick von Platen committed
417
        model = GlideTextToImageUNetModel.from_pretrained("fusing/unet-glide-text2im-dummy")
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn((1, model.config.in_channels, model.config.resolution, model.config.resolution)).to(
            torch_device
        )
        emb = torch.randn((1, 16, model.config.transformer_dim)).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        with torch.no_grad():
            output = model(noise, time_step, emb)

        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
435
        expected_output_slice = torch.tensor([2.7766, -10.3558, -14.9149, -0.9376, -14.9175, -17.7679, -5.5565, -12.9521, -12.9845])
436
437
438
439
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


patil-suraj's avatar
patil-suraj committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetLDMModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
    def get_input_shape(self):
        return (4, 32, 32)

    @property
    def get_output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "model_channels": 32,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
            "channel_mult": (1, 2),
            "num_heads": 2,
            "conv_resample": True,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
476

patil-suraj's avatar
patil-suraj committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
    def test_from_pretrained_hub(self):
        model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
508

patil-suraj's avatar
patil-suraj committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetGradTTSModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 32
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        condition = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        mask = floats_tensor((batch_size, 1, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"x": noise, "timesteps": time_step, "mu": condition, "mask": mask}

    @property
    def get_input_shape(self):
        return (4, 32, 16)

    @property
    def get_output_shape(self):
        return (4, 32, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "dim": 64,
            "groups": 4,
            "dim_mults": (1, 2),
            "n_feats": 32,
            "pe_scale": 1000,
            "n_spks": 1,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
544

patil-suraj's avatar
patil-suraj committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    def test_from_pretrained_hub(self):
        model, loading_info = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
anton-l's avatar
anton-l committed
562

patil-suraj's avatar
patil-suraj committed
563
564
565
566
567
568
569
570
571
572
573
574
        num_features = model.config.n_feats
        seq_len = 16
        noise = torch.randn((1, num_features, seq_len))
        condition = torch.randn((1, num_features, seq_len))
        mask = torch.randn((1, 1, seq_len))
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step, condition, mask)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
Patrick von Platen's avatar
Patrick von Platen committed
575
        expected_output_slice = torch.tensor([-0.0690, -0.0531, 0.0633, -0.0660, -0.0541, 0.0650, -0.0656, -0.0555, 0.0617])
patil-suraj's avatar
patil-suraj committed
576
577
578
579
580
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


581
582
583
584
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
585
        schedular = DDPMScheduler(timesteps=10)
586

Patrick von Platen's avatar
Patrick von Platen committed
587
        ddpm = DDPMPipeline(model, schedular)
588
589
590

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
591
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
592
593

        generator = torch.manual_seed(0)
594

patil-suraj's avatar
patil-suraj committed
595
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
596
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
597
        new_image = new_ddpm(generator=generator)
598
599
600
601
602
603
604

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
605
        ddpm = DDPMPipeline.from_pretrained(model_path)
606
607
608
609
610
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
611
        generator = torch.manual_seed(0)
612

patil-suraj's avatar
patil-suraj committed
613
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
614
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
615
        new_image = ddpm_from_hub(generator=generator)
616
617

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
618
619
620
621
622
623

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
624
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
625
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
626
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
627

Patrick von Platen's avatar
Patrick von Platen committed
628
        ddpm = DDPMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
629
630
631
632
633
634
635
636
637
638
639
640
641
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
642
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
643
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
644

Patrick von Platen's avatar
Patrick von Platen committed
645
        ddim = DDIMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
646
647
648
649
650
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
651
652
653
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
654
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
655

Patrick von Platen's avatar
Patrick von Platen committed
656
657
658
659
660
661
662
663
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

Patrick von Platen's avatar
Patrick von Platen committed
664
        pndm = PNDMPipeline(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
665
666
667
668
669
670
671
672
673
674
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
675
676
677
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
Patrick von Platen's avatar
Patrick von Platen committed
678
        ldm = LatentDiffusionPipeline.from_pretrained(model_id)
patil-suraj's avatar
patil-suraj committed
679
680
681
682
683
684
685
686
687

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
688
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
689

anton-l's avatar
anton-l committed
690
691
692
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
Patrick von Platen's avatar
Patrick von Platen committed
693
        glide = GlidePipeline.from_pretrained(model_id)
anton-l's avatar
anton-l committed
694
695
696
697
698
699
700
701
702
703
704

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
705
706
707
    @slow
    def test_grad_tts(self):
        model_id = "fusing/grad-tts-libri-tts"
Patrick von Platen's avatar
Patrick von Platen committed
708
        grad_tts = GradTTSPipeline.from_pretrained(model_id)
709
710
        noise_scheduler = GradTTSScheduler()
        grad_tts.noise_scheduler = noise_scheduler
Patrick von Platen's avatar
Patrick von Platen committed
711
712

        text = "Hello world, I missed you so much."
Patrick von Platen's avatar
Patrick von Platen committed
713
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
714
715

        # generate mel spectograms using text
Patrick von Platen's avatar
Patrick von Platen committed
716
        mel_spec = grad_tts(text, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
717

Patrick von Platen's avatar
Patrick von Platen committed
718
719
        assert mel_spec.shape == (1, 80, 143)
        expected_slice = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
720
            [-6.7584, -6.8347, -6.3293, -6.6437, -6.7233, -6.4684, -6.1187, -6.3172, -6.6890]
Patrick von Platen's avatar
Patrick von Platen committed
721
        )
Patrick von Platen's avatar
Patrick von Platen committed
722
        assert (mel_spec[0, :3, :3].cpu().flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
Patrick von Platen committed
723

724
725
726
727
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

Patrick von Platen's avatar
Patrick von Platen committed
728
        bddm = BDDMPipeline(model, noise_scheduler)
729
730
731
732
733
734
735

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
736
            _ = BDDMPipeline.from_pretrained(tmpdirname)
737
            # check if the same works using the DifusionPipeline class
738
            _ = DiffusionPipeline.from_pretrained(tmpdirname)