test_modeling_utils.py 20.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

patil-suraj's avatar
patil-suraj committed
17
import inspect
18
19
20
import tempfile
import unittest

21
import numpy as np
22
23
import torch

24
import pytest
25
26
27
28
29
30
31
32
from diffusers import (
    BDDM,
    DDIM,
    DDPM,
    GLIDE,
    PNDM,
    DDIMScheduler,
    DDPMScheduler,
33
    GLIDESuperResUNetModel,
34
35
    LatentDiffusion,
    PNDMScheduler,
patil-suraj's avatar
patil-suraj committed
36
    UNetGradTTSModel,
anton-l's avatar
anton-l committed
37
38
    UNetLDMModel,
    UNetModel,
39
)
40
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
41
from diffusers.pipeline_utils import DiffusionPipeline
42
from diffusers.pipelines.pipeline_bddm import DiffWave
Patrick von Platen's avatar
Patrick von Platen committed
43
from diffusers.testing_utils import floats_tensor, slow, torch_device
44
45


Patrick von Platen's avatar
Patrick von Platen committed
46
torch.backends.cuda.matmul.allow_tf32 = False
47
48


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
66
                self.register_to_config(a=a, b=b, c=c, d=d, e=e)
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

86
87
88
89
90
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


patil-suraj's avatar
patil-suraj committed
91
class ModelTesterMixin:
92
    def test_from_pretrained_save_pretrained(self):
patil-suraj's avatar
patil-suraj committed
93
94
95
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
Patrick von Platen's avatar
Patrick von Platen committed
96
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
97
        model.eval()
98
99
100

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
patil-suraj's avatar
patil-suraj committed
101
            new_model = self.model_class.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
102
            new_model.to(torch_device)
103

patil-suraj's avatar
patil-suraj committed
104
105
106
        with torch.no_grad():
            image = model(**inputs_dict)
            new_image = new_model(**inputs_dict)
107

patil-suraj's avatar
patil-suraj committed
108
109
        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 1e-5, "Models give different forward passes")
110

patil-suraj's avatar
patil-suraj committed
111
    def test_determinism(self):
patil-suraj's avatar
patil-suraj committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            first = model(**inputs_dict)
            second = model(**inputs_dict)

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)
126

patil-suraj's avatar
patil-suraj committed
127
    def test_output(self):
patil-suraj's avatar
patil-suraj committed
128
129
130
131
132
133
134
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)
135

patil-suraj's avatar
patil-suraj committed
136
137
138
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
139

patil-suraj's avatar
patil-suraj committed
140
    def test_forward_signature(self):
patil-suraj's avatar
patil-suraj committed
141
142
143
144
145
146
147
148
149
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["x", "timesteps"]
        self.assertListEqual(arg_names[:2], expected_arg_names)
150

patil-suraj's avatar
patil-suraj committed
151
    def test_model_from_config(self):
patil-suraj's avatar
patil-suraj committed
152
153
154
155
156
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
157

patil-suraj's avatar
patil-suraj committed
158
159
160
161
162
163
164
        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_config(tmpdirname)
            new_model = self.model_class.from_config(tmpdirname)
            new_model.to(torch_device)
            new_model.eval()
165

patil-suraj's avatar
patil-suraj committed
166
167
168
169
170
        # check if all paramters shape are the same
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)
171

patil-suraj's avatar
patil-suraj committed
172
173
174
        with torch.no_grad():
            output_1 = model(**inputs_dict)
            output_2 = new_model(**inputs_dict)
175

patil-suraj's avatar
patil-suraj committed
176
        self.assertEqual(output_1.shape, output_2.shape)
patil-suraj's avatar
patil-suraj committed
177
178

    def test_training(self):
patil-suraj's avatar
patil-suraj committed
179
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
180

patil-suraj's avatar
patil-suraj committed
181
182
183
184
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)
185
        noise = torch.randn((inputs_dict["x"].shape[0],) + self.get_output_shape).to(torch_device)
patil-suraj's avatar
patil-suraj committed
186
187
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
188

patil-suraj's avatar
patil-suraj committed
189
190
191
192
193
194
195
196
197
198
199
200
201

class UnetModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

patil-suraj's avatar
patil-suraj committed
202
        return {"x": noise, "timesteps": time_step}
203

patil-suraj's avatar
patil-suraj committed
204
205
206
    @property
    def get_input_shape(self):
        return (3, 32, 32)
207

patil-suraj's avatar
patil-suraj committed
208
209
210
    @property
    def get_output_shape(self):
        return (3, 32, 32)
patil-suraj's avatar
patil-suraj committed
211
212
213
214
215
216
217
218
219
220
221

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "ch": 32,
            "ch_mult": (1, 2),
            "num_res_blocks": 2,
            "attn_resolutions": (16,),
            "resolution": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
222

patil-suraj's avatar
patil-suraj committed
223
    def test_from_pretrained_hub(self):
patil-suraj's avatar
patil-suraj committed
224
225
226
        model, loading_info = UNetModel.from_pretrained("fusing/ddpm_dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)
patil-suraj's avatar
patil-suraj committed
227

patil-suraj's avatar
patil-suraj committed
228
        model.to(torch_device)
patil-suraj's avatar
patil-suraj committed
229
230
231
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
232

patil-suraj's avatar
patil-suraj committed
233
234
235
236
237
238
239
    def test_output_pretrained(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
240

patil-suraj's avatar
patil-suraj committed
241
242
        noise = torch.randn(1, model.config.in_channels, model.config.resolution, model.config.resolution)
        time_step = torch.tensor([10])
243

patil-suraj's avatar
patil-suraj committed
244
245
        with torch.no_grad():
            output = model(noise, time_step)
246

patil-suraj's avatar
patil-suraj committed
247
248
249
250
251
252
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([ 0.2891, -0.1899,  0.2595, -0.6214,  0.0968, -0.2622,  0.4688,  0.1311, 0.0053])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

253

patil-suraj's avatar
patil-suraj committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
class GLIDESuperResUNetTests(ModelTesterMixin, unittest.TestCase):
    model_class = GLIDESuperResUNetModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 6
        sizes = (32, 32)
        low_res_size = (4, 4)

        torch_device = "cpu"

        noise = torch.randn((batch_size, num_channels // 2) + sizes).to(torch_device)
        low_res = torch.randn((batch_size, 3) + low_res_size).to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0], device=torch_device)

        return {"x": noise, "timesteps": time_step, "low_res": low_res}
271

patil-suraj's avatar
patil-suraj committed
272
273
274
    @property
    def get_input_shape(self):
        return (3, 32, 32)
275

patil-suraj's avatar
patil-suraj committed
276
277
278
    @property
    def get_output_shape(self):
        return (6, 32, 32)
279

patil-suraj's avatar
patil-suraj committed
280
281
282
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "attention_resolutions": (2,),
283
            "channel_mult": (1, 2),
patil-suraj's avatar
patil-suraj committed
284
285
286
287
288
289
290
291
            "in_channels": 6,
            "out_channels": 6,
            "model_channels": 32,
            "num_head_channels": 8,
            "num_heads_upsample": 1,
            "num_res_blocks": 2,
            "resblock_updown": True,
            "resolution": 32,
292
            "use_scale_shift_norm": True,
patil-suraj's avatar
patil-suraj committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

        output, _ = torch.split(output, 3, dim=1)
307

patil-suraj's avatar
patil-suraj committed
308
309
310
        self.assertIsNotNone(output)
        expected_shape = inputs_dict["x"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
311

patil-suraj's avatar
patil-suraj committed
312
    def test_from_pretrained_hub(self):
313
314
315
        model, loading_info = GLIDESuperResUNetModel.from_pretrained(
            "fusing/glide-super-res-dummy", output_loading_info=True
        )
patil-suraj's avatar
patil-suraj committed
316
317
318
319
320
321
322
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"
323

patil-suraj's avatar
patil-suraj committed
324
325
326
327
328
329
    def test_output_pretrained(self):
        model = GLIDESuperResUNetModel.from_pretrained("fusing/glide-super-res-dummy")

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
330

331
        noise = torch.randn(1, 3, 64, 64)
patil-suraj's avatar
patil-suraj committed
332
333
        low_res = torch.randn(1, 3, 4, 4)
        time_step = torch.tensor([42] * noise.shape[0])
334

patil-suraj's avatar
patil-suraj committed
335
336
        with torch.no_grad():
            output = model(noise, time_step, low_res)
337

patil-suraj's avatar
patil-suraj committed
338
339
340
        output, _ = torch.split(output, 3, dim=1)
        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
341
        expected_output_slice = torch.tensor([-22.8782, -23.2652, -15.3966, -22.8034, -23.3159, -15.5640, -15.3970, -15.4614, - 10.4370])
patil-suraj's avatar
patil-suraj committed
342
343
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
patil-suraj's avatar
patil-suraj committed
344

anton-l's avatar
anton-l committed
345

patil-suraj's avatar
patil-suraj committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetLDMModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"x": noise, "timesteps": time_step}

    @property
    def get_input_shape(self):
        return (4, 32, 32)

    @property
    def get_output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "image_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "model_channels": 32,
            "num_res_blocks": 2,
            "attention_resolutions": (16,),
            "channel_mult": (1, 2),
            "num_heads": 2,
            "conv_resample": True,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
382

patil-suraj's avatar
patil-suraj committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    def test_from_pretrained_hub(self):
        model, loading_info = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetLDMModel.from_pretrained("fusing/unet-ldm-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
        time_step = torch.tensor([10] * noise.shape[0])

        with torch.no_grad():
            output = model(noise, time_step)

        output_slice = output[0, -1, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

patil-suraj's avatar
patil-suraj committed
414

patil-suraj's avatar
patil-suraj committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
class UNetGradTTSModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNetGradTTSModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 32
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        condition = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        mask = floats_tensor((batch_size, 1, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"x": noise, "timesteps": time_step, "mu": condition, "mask": mask}

    @property
    def get_input_shape(self):
        return (4, 32, 16)

    @property
    def get_output_shape(self):
        return (4, 32, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "dim": 64,
            "groups": 4,
            "dim_mults": (1, 2),
            "n_feats": 32,
            "pe_scale": 1000,
            "n_spks": 1,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict
anton-l's avatar
anton-l committed
450

patil-suraj's avatar
patil-suraj committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def test_from_pretrained_hub(self):
        model, loading_info = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNetGradTTSModel.from_pretrained("fusing/unet-grad-tts-dummy")
        model.eval()

        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)
anton-l's avatar
anton-l committed
468

patil-suraj's avatar
patil-suraj committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        num_features = model.config.n_feats
        seq_len = 16
        noise = torch.randn((1, num_features, seq_len))
        condition = torch.randn((1, num_features, seq_len))
        mask = torch.randn((1, 1, seq_len))
        time_step = torch.tensor([10])

        with torch.no_grad():
            output = model(noise, time_step, condition, mask)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0690, -0.0531,  0.0633, -0.0660, -0.0541,  0.0650, -0.0656, -0.0555, 0.0617])
        # fmt: on

        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))


487
488
489
490
class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
Patrick von Platen's avatar
Patrick von Platen committed
491
        schedular = DDPMScheduler(timesteps=10)
492
493
494
495
496
497

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
498
499

        generator = torch.manual_seed(0)
500

patil-suraj's avatar
patil-suraj committed
501
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
502
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
503
        new_image = new_ddpm(generator=generator)
504
505
506
507
508
509
510
511
512
513
514
515
516

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
517
        generator = torch.manual_seed(0)
518

patil-suraj's avatar
patil-suraj committed
519
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
520
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
521
        new_image = ddpm_from_hub(generator=generator)
522
523

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
524
525
526
527
528
529

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
530
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
531
        noise_scheduler = DDPMScheduler.from_config(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
532
        noise_scheduler = noise_scheduler.set_format("pt")
Patrick von Platen's avatar
Patrick von Platen committed
533
534

        ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
535
536
537
538
539
540
541
542
543
544
545
546
547
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

Patrick von Platen's avatar
Patrick von Platen committed
548
        unet = UNetModel.from_pretrained(model_id)
Patrick von Platen's avatar
Patrick von Platen committed
549
        noise_scheduler = DDIMScheduler(tensor_format="pt")
Patrick von Platen's avatar
Patrick von Platen committed
550
551

        ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
552
553
554
555
556
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
557
558
559
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
560
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
patil-suraj's avatar
patil-suraj committed
561

Patrick von Platen's avatar
Patrick von Platen committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    @slow
    def test_pndm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        unet = UNetModel.from_pretrained(model_id)
        noise_scheduler = PNDMScheduler(tensor_format="pt")

        pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler)
        image = pndm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor(
            [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471]
        )
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

patil-suraj's avatar
patil-suraj committed
581
582
583
584
585
586
587
588
589
590
591
592
593
    @slow
    def test_ldm_text2img(self):
        model_id = "fusing/latent-diffusion-text2im-large"
        ldm = LatentDiffusion.from_pretrained(model_id)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.manual_seed(0)
        image = ldm([prompt], generator=generator, num_inference_steps=20)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 256, 256)
        expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458])
Patrick von Platen's avatar
update  
Patrick von Platen committed
594
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
595

anton-l's avatar
anton-l committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    @slow
    def test_glide_text2img(self):
        model_id = "fusing/glide-base"
        glide = GLIDE.from_pretrained(model_id)

        prompt = "a pencil sketch of a corgi"
        generator = torch.manual_seed(0)
        image = glide(prompt, generator=generator, num_inference_steps_upscale=20)

        image_slice = image[0, :3, :3, -1].cpu()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = torch.tensor([0.7119, 0.7073, 0.6460, 0.7780, 0.7423, 0.6926, 0.7378, 0.7189, 0.7784])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

611
612
613
614
615
616
617
618
619
620
621
622
623
624
    def test_module_from_pipeline(self):
        model = DiffWave(num_res_layers=4)
        noise_scheduler = DDPMScheduler(timesteps=12)

        bddm = BDDM(model, noise_scheduler)

        # check if the library name for the diffwave moduel is set to pipeline module
        self.assertTrue(bddm.config["diffwave"][0] == "pipeline_bddm")

        # check if we can save and load the pipeline
        with tempfile.TemporaryDirectory() as tmpdirname:
            bddm.save_pretrained(tmpdirname)
            _ = BDDM.from_pretrained(tmpdirname)
            # check if the same works using the DifusionPipeline class
625
            _ = DiffusionPipeline.from_pretrained(tmpdirname)