imagenet_main.py 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
34
35
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
36

37
NUM_IMAGES = {
38
39
40
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
  """
  # Dense features in Example proto.
  feature_map = {
98
      'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
99
                                             default_value=''),
100
101
102
103
      'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
                                                 default_value=-1),
      'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
                                                default_value=''),
104
  }
105
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
106
107
108
109
110
111
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
114
  features = tf.io.parse_single_example(serialized=example_serialized,
                                        features=feature_map)
115
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
116

117
118
119
120
121
122
123
124
125
126
127
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
128
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
129
130

  return features['image/encoded'], label, bbox
131
132


133
def parse_record(raw_record, is_training, dtype):
134
135
136
137
138
139
140
141
142
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
143
    dtype: data type to use for images/features.
144

145
146
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
147
148
149
150
151
152
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
153
154
155
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
156
      is_training=is_training)
157
  image = tf.cast(image, dtype)
158

159
  return image, label
160
161


162
163
164
165
166
167
168
169
def input_fn(is_training,
             data_dir,
             batch_size,
             num_epochs=1,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             num_parallel_batches=1,
             parse_record_fn=parse_record,
170
171
             input_context=None,
             drop_remainder=False):
172
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
173

174
175
176
177
178
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
179
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
180
181
    datasets_num_private_threads: Number of private threads for tf.data.
    num_parallel_batches: Number of parallel batches for tf.data.
Priya Gupta's avatar
Priya Gupta committed
182
    parse_record_fn: Function to use for parsing the records.
183
184
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
185
186
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
187
188
189
190
191
192

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
193

194
  if input_context:
195
196
197
    tf.compat.v1.logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
            input_context.input_pipeline_id, input_context.num_input_pipelines))
198
199
200
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

201
  if is_training:
202
203
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
204

205
  # Convert to individual records.
Haoyu Zhang's avatar
Haoyu Zhang committed
206
207
208
209
210
211
212
  # cycle_length = 10 means that up to 10 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
  dataset = dataset.interleave(
      tf.data.TFRecordDataset,
      cycle_length=10,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
213

214
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
215
216
217
218
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
219
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
220
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
221
222
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
223
224
      num_parallel_batches=num_parallel_batches,
      drop_remainder=drop_remainder
225
  )
226
227


Toby Boyd's avatar
Toby Boyd committed
228
def get_synth_input_fn(dtype):
229
  return resnet_run_loop.get_synth_input_fn(
230
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
231
      dtype=dtype)
232
233


234
235
236
###############################################################################
# Running the model
###############################################################################
237
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
238
  """Model class with appropriate defaults for Imagenet data."""
239

240
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
241
               resnet_version=resnet_model.DEFAULT_VERSION,
242
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
243
244
245
246
247
248
249
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
250
        enables users to extend the same model to their own datasets.
251
252
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
253
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
254
    """
255
256
257

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
258
      bottleneck = False
259
    else:
260
      bottleneck = True
261
262
263

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
264
        bottleneck=bottleneck,
265
        num_classes=num_classes,
266
267
268
269
270
271
272
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
273
        resnet_version=resnet_version,
274
275
276
        data_format=data_format,
        dtype=dtype
    )
277
278
279


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
280
281
282
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
283
284
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
285
286
287
288
289
290
291
292
293

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
294
295
296
297
298
299
300
301
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
302
303
  }

304
305
306
307
308
309
310
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
311
312


313
314
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
315
316
317
318
319
320
321
322
323
324

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

325
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
326
327
328
329
      batch_size=params['batch_size'] * params.get('num_workers', 1),
      batch_denom=256, num_images=NUM_IMAGES['train'],
      boundary_epochs=[30, 60, 80, 90], decay_rates=[1, 0.1, 0.01, 0.001, 1e-4],
      warmup=warmup, base_lr=base_lr)
330

331
332
333
334
335
336
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
pkanwar23's avatar
pkanwar23 committed
337
      weight_decay=flags.FLAGS.weight_decay,
338
339
340
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
341
      resnet_version=params['resnet_version'],
342
343
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
344
      dtype=params['dtype'],
pkanwar23's avatar
pkanwar23 committed
345
346
      fine_tune=params['fine_tune'],
      label_smoothing=flags.FLAGS.label_smoothing
347
  )
348
349


350
def define_imagenet_flags(dynamic_loss_scale=False):
351
  resnet_run_loop.define_resnet_flags(
352
353
      resnet_size_choices=['18', '34', '50', '101', '152', '200'],
      dynamic_loss_scale=dynamic_loss_scale)
354
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
355
  flags_core.set_defaults(train_epochs=90)
356

357

358
359
360
361
362
363
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
Toby Boyd's avatar
Toby Boyd committed
364
365
366
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
367
368

  resnet_run_loop.resnet_main(
369
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
370
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
371
372


373
def main(_):
374
375
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
376
377


378
if __name__ == '__main__':
379
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
380
381
  define_imagenet_flags()
  absl_app.run(main)