"examples/text-generation/pplm/run_pplm.py" did not exist on "f42816e7fca8280927790f74c6e280c37d49b280"
modeling_openai.py 37.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
import math
import os
thomwolf's avatar
thomwolf committed
26
27
import sys
from io import open
thomwolf's avatar
thomwolf committed
28
29
30

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
32
33
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path
35
from .model_utils import Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer
36
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
41
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
45
46
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

55
56
57
58
59
60
61
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
62
    # This was used when we had a single embedding matrix for positions and tokens
63
64
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
65
66
67
    init_params = [arr.squeeze() for arr in init_params]

    try:
68
69
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
70
    except AssertionError as e:
71
72
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
73
74
        raise

75
76
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
77
    names.pop(0)
78
79
    # Pop position and token embedding arrays
    init_params.pop(0)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


127
128
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
129

130
class OpenAIGPTConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
131
132
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
133
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
134
135
136
137
138

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
139
        n_positions=512,
140
141
142
143
144
145
146
147
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
148
        layer_norm_epsilon=1e-5,
149
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
150
151
        predict_special_tokens=True,
        **kwargs
152
    ):
thomwolf's avatar
thomwolf committed
153
154
155
156
157
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
158
159
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
160
161
162
163
164
165
166
167
168
169
170
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
171
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
172
173
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
174
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
175
        """
thomwolf's avatar
thomwolf committed
176
177
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
178
179
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
180
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
181
182
183
184
185
186
187
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
188
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
189
190
191
192
193
194
195
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
196
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
197
            self.initializer_range = initializer_range
198
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
199
        else:
200
201
202
203
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
204
205

    @property
206
207
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
208

thomwolf's avatar
thomwolf committed
209
210

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
211
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
212
213
214
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
215
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
216
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
217
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
218
219
        self.split_size = n_state
        self.scale = scale
220

thomwolf's avatar
thomwolf committed
221
        self.output_attentions = config.output_attentions
222

223
224
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
225
226
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
227

228
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
229
230
        if len(heads) == 0:
            return
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
245
246
247
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
248
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
249
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
250
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
251
252
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
253
254
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
255
256
257
258
259

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
260
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
261
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
262
263
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

278
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
279
280
281
282
283
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
284

thomwolf's avatar
thomwolf committed
285
286
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
287

thomwolf's avatar
thomwolf committed
288
289
290
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
291
292
293

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
294
295
296


class MLP(nn.Module):
297
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
298
        super(MLP, self).__init__()
299
        nx = config.n_embd
300
301
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
302
303
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
304
305
306
307
308
309
310
311

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
312
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
313
        super(Block, self).__init__()
314
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
315
        self.attn = Attention(nx, n_ctx, config, scale)
316
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
317
        self.mlp = MLP(4 * nx, config)
318
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
319

320
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
321
322
323
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
324
325
326
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
327
328
329

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
330
331


thomwolf's avatar
thomwolf committed
332
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
333
334
    """ Language Model Head for the transformer """

335
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
336
        super(OpenAIGPTLMHead, self).__init__()
337
        self.n_embd = config.n_embd
338
339
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
340
341
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
342
343
        self.set_embeddings_weights(model_embeddings_weights)

344
345
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
346
        embed_shape = model_embeddings_weights.shape
347
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
348

thomwolf's avatar
thomwolf committed
349
350
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
351
352
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
353
354
355
        return lm_logits


thomwolf's avatar
thomwolf committed
356
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
357
358
    """ Classifier Head for the transformer """

359
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
360
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
361
362
363
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
364

365
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
366
367
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
368
369
370
371
372
373
374
375
376
377
    def forward(self, hidden_states, mc_token_ids=None):
        """ Extract classification token hidden state and project it using self.linear
            hidden_state: hidden state of shape (bsz, num_choices, seq_length, hidden_size)
            mc_token_ids: [optional] index of the classification token, shape (bsz, num_choices)
            if mc_token_ids=None we take the last token of the sequence as classification token
        """
        if mc_token_ids is None:
            mc_token_ids = torch.full_like(hidden_states[:, :, :1, :], hidden_states.shape[2] - 1, dtype=torch.long)
        else:
            mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
378
379
380
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
381
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
382
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
383
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
384
385
386
        return multiple_choice_logits


387
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
388
389
390
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
391
392
393
394
    config_class = OpenAIGPTConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
395

thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
406
407
    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
408

thomwolf's avatar
thomwolf committed
409
    @classmethod
410
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
411
412
413
414
415
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
416
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
417
418
                - a str with the name of a pre-trained model to load selected in the list of:
                - a path or url to a pretrained model archive containing:
419
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
420
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
421
                - a path or url to a pretrained model archive containing:
422
                    . `config.json` a configuration file for the model
423
424
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
425
426
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
427
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
428
        """
429
430
431
432
        num_special_tokens = kwargs.get('num_special_tokens', None)
        kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
433

thomwolf's avatar
thomwolf committed
434
        # Add additional embeddings for special tokens if needed
435
        # This step also make sure we are still sharing the output and input embeddings after loading weights
436
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
437
        return model
thomwolf's avatar
thomwolf committed
438
439


thomwolf's avatar
thomwolf committed
440
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
441
442
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

443
444
445
446
447
448
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
449
450
451
452
453
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
454
         config.vocab_size + config.n_special - 1]                  ______________________
455

456
457
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
458
459
460
    You should use the associate indices to index the embeddings.

    Params:
461
462
463
464
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
465
466
467

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
468
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
469
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
470
            with the position indices (selected in the range [0, config.n_positions - 1[.
471
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
472
473
474
475
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
476
477
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
478
479

    Outputs:
480
481
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
482
483
484
485
486
487
488
489
490
491
492
493
494
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
495

thomwolf's avatar
thomwolf committed
496
    def __init__(self, config):
497
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
498
499
500
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
501
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
502
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
503
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
504
        block = Block(config.n_ctx, config, scale=True)
505
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
506

thomwolf's avatar
thomwolf committed
507
508
        self.apply(self.init_weights)

509
    def set_num_special_tokens(self, num_special_tokens=None):
510
        " Update input embeddings with new embedding matrice if needed "
511
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
512
            return
thomwolf's avatar
thomwolf committed
513
514
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
515
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
516
        old_embed = self.tokens_embed
517
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
518
        self.tokens_embed.to(old_embed.weight.device)
519
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
520
521
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
522

thomwolf's avatar
thomwolf committed
523
    def _prune_heads(self, heads_to_prune):
524
525
526
527
528
529
530
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
531
        if position_ids is None:
532
533
534
535
536
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
537
538
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

539
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
540
        # 1.0 in head_mask indicate we keep the head
541
        # attention_probs has shape bsz x n_heads x N x N
542
        # head_mask has shape n_layer x batch x n_heads x N x N
543
544
        if head_mask is not None:
            if head_mask.dim() == 1:
545
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
546
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
547
            elif head_mask.dim() == 2:
548
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
549
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
550
551
        else:
            head_mask = [None] * self.config.n_layer
552

thomwolf's avatar
thomwolf committed
553
554
555
556
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

557
558
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
559
560
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
561
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
562
563
564
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
565
566
        hidden_states = self.drop(hidden_states)

567
568
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
569
        all_attentions = []
thomwolf's avatar
thomwolf committed
570
        all_hidden_states = []
571
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
572
573
574
            if self.output_hidden_states:
                all_hidden_states.append(hidden_states.view(*output_shape))

575
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
576
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
577
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
578
579
580
581
                all_attentions.append(outputs[1])

        # Add last layer
        if self.output_hidden_states:
582
583
            all_hidden_states.append(hidden_states.view(*output_shape))

thomwolf's avatar
thomwolf committed
584
585
586
        outputs = [hidden_states.view(*output_shape)]
        if self.output_hidden_states:
            outputs.append(all_hidden_states)
thomwolf's avatar
thomwolf committed
587
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
588
589
            outputs.append(all_attentions)
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
590

591

thomwolf's avatar
thomwolf committed
592
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
593
594
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

595
596
597
598
599
600
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
601
602
603
604
605
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
606
         config.vocab_size + config.n_special - 1]                  ______________________
607

608
609
610
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
611
612

    Params:
613
614
615
616
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
617
618
619

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
620
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
621
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
622
            with the position indices (selected in the range [0, config.n_positions - 1[.
623
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
624
625
626
627
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
628
629
630
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
631
632
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
633
634
635
636
637

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
638
639
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
640
641
642
643
644
645
646
647
648
649
650
651

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
652

thomwolf's avatar
thomwolf committed
653
    def __init__(self, config):
654
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
655
        self.transformer = OpenAIGPTModel(config)
656
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
657
658
        self.apply(self.init_weights)

659
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
660
661
662
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
663
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
664
        self.transformer.set_num_special_tokens(num_special_tokens)
665
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
666

667
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
668
669
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
670
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
671
672

        outputs = [lm_logits] + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
673
        if lm_labels is not None:
674
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
675
676
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
677
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
678
            loss_fct = CrossEntropyLoss(ignore_index=-1)
679
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
680
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
681
682
683
            outputs = [loss] + outputs

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
684

685

thomwolf's avatar
thomwolf committed
686
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
687
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
688

689
690
691
692
693
694
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
695
696
697
698
699
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
700
         config.vocab_size + config.n_special - 1]                  ______________________
701

702
703
704
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
705
706

    Params:
707
708
709
710
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
711
712

    Inputs:
thomwolf's avatar
thomwolf committed
713
714
715
716
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
717
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
718
            with the position indices (selected in the range [0, config.n_positions - 1[.
719
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
720
721
722
723
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
724
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
725
726
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
727
728
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
729
730
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
731
732
733
734
735

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
736
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
737
738
739
740
741
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
742
743
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
744
745
746

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
747
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
748
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
749
750
    ```
    """
751

thomwolf's avatar
thomwolf committed
752
    def __init__(self, config):
753
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
754
        self.transformer = OpenAIGPTModel(config)
755
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
756
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
757
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
758

759
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
760
761
762
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
763
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
764
        self.transformer.set_num_special_tokens(num_special_tokens)
765
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
766

thomwolf's avatar
thomwolf committed
767
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
768
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
769
770
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
771

thomwolf's avatar
thomwolf committed
772
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
773
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
774
775
776
777
778
779
780

        outputs = [lm_logits, mc_logits] + transformer_outputs[1:]
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
            outputs = [loss] + outputs
thomwolf's avatar
thomwolf committed
781
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
782
783
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
784
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
785
786
787
788
789
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = [loss] + outputs

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)