modeling_openai.py 45.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
import math
import os
thomwolf's avatar
thomwolf committed
26
27
import sys
from io import open
thomwolf's avatar
thomwolf committed
28
29
30

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
32
33
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
35
from .modeling import BertLayerNorm as LayerNorm
36
from .modeling_gpt2 import prune_conv1d_layer
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
41
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
45
46
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54
55
56
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
57
    # This was used when we had a single embedding matrix for positions and tokens
58
59
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
60
61
62
    init_params = [arr.squeeze() for arr in init_params]

    try:
63
64
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
65
    except AssertionError as e:
66
67
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
68
69
        raise

70
71
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
72
    names.pop(0)
73
74
    # Pop position and token embedding arrays
    init_params.pop(0)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


122
123
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
126
127
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
128
129
130
131
132

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
133
        n_positions=512,
134
135
136
137
138
139
140
141
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
142
        layer_norm_epsilon=1e-5,
143
        initializer_range=0.02,
144
        predict_special_tokens=True
145
    ):
thomwolf's avatar
thomwolf committed
146
147
148
149
150
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
151
152
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
159
160
161
162
163
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
164
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
165
166
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
167
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
168
        """
thomwolf's avatar
thomwolf committed
169
170
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
171
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
179
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
187
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
188
            self.initializer_range = initializer_range
189
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
190
        else:
191
192
193
194
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
195
196

    @property
197
198
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
205
206
207
208
209
210

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
211
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

227
228
229
230
231
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

232

thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
241
242
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
249
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
257
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
258
259
260
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
261
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
262
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
263
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
264
265
        self.split_size = n_state
        self.scale = scale
266

thomwolf's avatar
thomwolf committed
267
        self.output_attentions = output_attentions
268
269
270
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
271
272
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
273
274
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def prune_heads(self, heads):
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
291
292
293
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
294
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
295
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
296
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
297
298
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
299
300
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
301
302
303
304
305

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
306
307
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

323
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
324
325
326
327
328
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
329
330
331
332
333
334

        a = self._attn(query, key, value, head_mask)
        if self.keep_multihead_output:
            self.multihead_output = a
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
335
336
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
337
338
339
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
340
341
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
342
343
344
345
        return a


class MLP(nn.Module):
346
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
347
        super(MLP, self).__init__()
348
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
349
350
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
351
352
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
353
354
355
356
357
358
359
360

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
361
    def __init__(self, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
362
        super(Block, self).__init__()
363
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
364
        self.output_attentions = output_attentions
365
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions, keep_multihead_output)
366
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
367
        self.mlp = MLP(4 * nx, config)
368
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
369

370
371
    def forward(self, x, head_mask=None):
        a = self.attn(x, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
372
373
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
374
375
376
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
377
378
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
379
380
381
        return h


thomwolf's avatar
thomwolf committed
382
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
383
384
    """ Language Model Head for the transformer """

385
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
386
        super(OpenAIGPTLMHead, self).__init__()
387
        self.n_embd = config.n_embd
388
389
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
390
391
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
392
393
        self.set_embeddings_weights(model_embeddings_weights)

394
395
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
396
        embed_shape = model_embeddings_weights.shape
397
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
398

thomwolf's avatar
thomwolf committed
399
400
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
401
402
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
403
404
405
        return lm_logits


thomwolf's avatar
thomwolf committed
406
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
407
408
    """ Classifier Head for the transformer """

409
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
410
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
411
412
413
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
414

415
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
416
417
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
418
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
419
        # Classification logits
thomwolf's avatar
thomwolf committed
420
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
421
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
422
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
423
424
425
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
426
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
427
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
428
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
436

thomwolf's avatar
thomwolf committed
437
438
439
440
441
442
443
444
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
445
446
                )
            )
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
461

thomwolf's avatar
thomwolf committed
462
    @classmethod
463
    def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
464
465
466
467
468
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
469
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
470
471
472
473
474
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
475
                - a path or url to a pretrained model archive containing:
476
                    . `openai-gpt-config.json` a configuration file for the model
477
478
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
479
480
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
481
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
482
        """
483
484
485
486
487
488
489
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
490
491
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
492
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
493
        else:
thomwolf's avatar
thomwolf committed
494
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
495
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
496
497
498
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
499
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
500
501
502
503
504
505
506
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
thomwolf's avatar
thomwolf committed
507
                    "We assumed '{}' was a path or url but couldn't find file {} "
thomwolf's avatar
thomwolf committed
508
509
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
                        archive_file
                    )
                )
            return None
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find file {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                        config_file
thomwolf's avatar
thomwolf committed
528
                    )
529
                )
thomwolf's avatar
thomwolf committed
530
            return None
531
532
533
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
534
        else:
535
536
537
538
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
539
        # Load config
540
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
541
542
543
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
544
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
545
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
546
547
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
548
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
549
550
551
552
553

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
554
555
556
557
558
559
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
560
561
562
563
564
565
566
567
568
569
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
570
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
571
572
573
574
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

575
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
576
577
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
578
579
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
580
581
            for name, child in module._modules.items():
                if child is not None:
582
583
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
584
585
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
586
587
588
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
589
        if len(missing_keys) > 0:
590
591
592
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
593
        if len(unexpected_keys) > 0:
594
595
596
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
597
        if len(error_msgs) > 0:
598
599
600
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
601

thomwolf's avatar
thomwolf committed
602
        # Add additional embeddings for special tokens if needed
603
604
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
605
        return model
thomwolf's avatar
thomwolf committed
606
607


thomwolf's avatar
thomwolf committed
608
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
609
610
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

611
612
613
614
615
616
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
617
618
619
620
621
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
622
         config.vocab_size + config.n_special - 1]                  ______________________
623

624
625
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
626
627
628
    You should use the associate indices to index the embeddings.

    Params:
629
630
631
632
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
633
634
635

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
636
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
637
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
638
            with the position indices (selected in the range [0, config.n_positions - 1[.
639
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
640
641
642
643
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
644
645
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
646
647

    Outputs:
648
649
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
650
651
652
653
654
655
656
657
658
659
660
661
662
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
663

664
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
665
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
666
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
667
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
668
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
669
        self.drop = nn.Dropout(config.embd_pdrop)
670
671
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions,
                                                        keep_multihead_output=keep_multihead_output)
672
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
673

thomwolf's avatar
thomwolf committed
674
675
676
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
677
678
679
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
680
681
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
682
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
683
        old_embed = self.tokens_embed
684
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
685
        self.tokens_embed.to(old_embed.weight.device)
686
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
687
688
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [h.attn.multihead_output for h in self.h]

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
704
        if position_ids is None:
705
706
707
708
709
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
710
711
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

712
713
714
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we mask the head
        # attention_probs has shape bsz x n_heads x N x N
715
        # head_mask has shape n_layer x batch x n_heads x N x N
716
717
        if head_mask is not None:
            if head_mask.dim() == 1:
718
719
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.n_layer, -1, -1, -1, -1)
720
            elif head_mask.dim() == 2:
721
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
722
723
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
            head_mask = (1.0 - head_mask)
724
725
        else:
            head_mask = [None] * self.config.n_layer
726

thomwolf's avatar
thomwolf committed
727
728
729
730
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

731
732
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
733
734
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
735
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
736
737
738
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
739
740
        hidden_states = self.drop(hidden_states)

741
742
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
743
        all_attentions = []
744
        all_hidden_states = [hidden_states.view(*output_shape)]
745
746
        for i, block in enumerate(self.h):
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
747
            if self.output_attentions:
748
                attentions, hidden_states = outputs
thomwolf's avatar
thomwolf committed
749
750
                all_attentions.append(attentions)
            else:
751
                hidden_states = outputs
752
753
            all_hidden_states.append(hidden_states.view(*output_shape))

thomwolf's avatar
thomwolf committed
754
        if self.output_attentions:
755
756
            return all_attentions, all_hidden_states
        return all_hidden_states
thomwolf's avatar
thomwolf committed
757

758

thomwolf's avatar
thomwolf committed
759
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
760
761
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

762
763
764
765
766
767
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
768
769
770
771
772
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
773
         config.vocab_size + config.n_special - 1]                  ______________________
774

775
776
777
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
778
779

    Params:
780
781
782
783
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
784
785
786

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
787
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
788
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
789
            with the position indices (selected in the range [0, config.n_positions - 1[.
790
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
791
792
793
794
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
795
796
797
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
798
799
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
800
801
802
803
804

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
805
806
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
807
808
809
810
811
812
813
814
815
816
817
818

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
819

820
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
821
        super(OpenAIGPTLMHeadModel, self).__init__(config)
822
823
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
824
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
825
826
        self.apply(self.init_weights)

827
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
828
829
830
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
831
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
832
        self.transformer.set_num_special_tokens(num_special_tokens)
833
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
834

835
836
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
837
838
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
839
840
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
841
842
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
843
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
844
845
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
846
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
847
            loss_fct = CrossEntropyLoss(ignore_index=-1)
848
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
849
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
850
            return loss
thomwolf's avatar
thomwolf committed
851
852
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
853
        return lm_logits
thomwolf's avatar
thomwolf committed
854

855

thomwolf's avatar
thomwolf committed
856
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
857
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
858

859
860
861
862
863
864
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
865
866
867
868
869
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
870
         config.vocab_size + config.n_special - 1]                  ______________________
871

872
873
874
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
875
876

    Params:
877
878
879
880
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
881
882

    Inputs:
thomwolf's avatar
thomwolf committed
883
884
885
886
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
887
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
888
            with the position indices (selected in the range [0, config.n_positions - 1[.
889
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
890
891
892
893
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
894
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
895
896
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
897
898
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
899
900
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
901
902
903
904
905

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
906
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
907
908
909
910
911
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
912
913
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
914
915
916

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
917
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
918
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
919
920
    ```
    """
921

922
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
923
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
924
925
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
926
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
927
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
928
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
929

930
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
931
932
933
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
934
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
935
        self.transformer.set_num_special_tokens(num_special_tokens)
936
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
937

938
939
940
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
941
942
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
943
944
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
945
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
946
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
947
948
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
949
950
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
951
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
952
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
953
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
954
            loss_fct = CrossEntropyLoss()
955
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
956
957
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
958
959
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
960
        return lm_logits, mc_logits