modeling_openai.py 36.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
import collections
thomwolf's avatar
thomwolf committed
19
20
import copy
import json
thomwolf's avatar
thomwolf committed
21
import logging
22
23
24
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
25
26
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29
30
31

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
32
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
33
34
from torch.nn.parameter import Parameter

thomwolf's avatar
thomwolf committed
35
from .file_utils import cached_path
36
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
41
42
43
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt.tar.gz"}
CONFIG_NAME = "openai_gpt_config.json"
WEIGHTS_NAME = "pytorch_model.bin"

44
45
46
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54
55
56
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

57
58
59
    # Thsi as used when we had a single embedding matrix for positions and tokens
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
60
61
62
    init_params = [arr.squeeze() for arr in init_params]

    try:
63
64
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
65
    except AssertionError as e:
66
67
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
68
69
        raise

70
71
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
72
    names.pop(0)
73
74
    # Pop position and token embedding arrays
    init_params.pop(0)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


122
123
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
126
127
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
128
129
130
131
132

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
133
        n_positions=512,
134
135
136
137
138
139
140
141
142
143
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        initializer_range=0.02,
    ):
thomwolf's avatar
thomwolf committed
144
145
146
147
148
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
149
150
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
thomwolf's avatar
thomwolf committed
165
166
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
167
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
174
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
175
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
184
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
            self.initializer_range = initializer_range
        else:
185
186
187
188
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
189
190

    @property
191
192
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
193
194
195
196
197
198
199
200
201
202
203
204

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
205
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

221

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
228
229
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
230
231
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
238
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
239
240
241
242
243
244
245
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
246
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
247
248
249
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
250
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
251
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
252
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
253
254
255
256
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
257
258
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
259
260
261
262
263

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
264
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
265
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
266
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
267
268
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
300
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
301
        super(MLP, self).__init__()
302
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
303
304
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
305
306
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
307
308
309
310
311
312
313
314

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
315
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
316
        super(Block, self).__init__()
317
318
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
319
        self.ln_1 = LayerNorm(nx)
320
        self.mlp = MLP(4 * nx, config)
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


thomwolf's avatar
thomwolf committed
331
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
332
333
    """ Language Model Head for the transformer """

334
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
335
        super(OpenAIGPTLMHead, self).__init__()
336
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
337
338
339
340
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
thomwolf's avatar
thomwolf committed
341
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
342
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
343

thomwolf's avatar
thomwolf committed
344
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
345
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
346
347
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
348
349
350
        return lm_logits


thomwolf's avatar
thomwolf committed
351
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
352
353
    """ Classifier Head for the transformer """

354
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
355
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
356
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
357
        # self.multiple_choice_token = multiple_choice_token
358
359
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
360

361
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
362
363
        nn.init.normal_(self.linear.bias, 0)

364
    def forward(self, hidden_states, mc_token_mask):
thomwolf's avatar
thomwolf committed
365
        # Classification logits
thomwolf's avatar
thomwolf committed
366
        # hidden_states = hidden_states.view(-1, self.n_embd)
367
368
369
        # mc_token_mask = mc_token_mask.view(-1, 1).expand_as(hidden_states)
        mc_token_mask = mc_token_mask.float()
        multiple_choice_h = hidden_states * mc_token_mask.unsqueeze(-1)
thomwolf's avatar
thomwolf committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
388

thomwolf's avatar
thomwolf committed
389
390
391
392
393
394
395
396
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
397
398
                )
            )
thomwolf's avatar
thomwolf committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
416
417
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
418
419
420
    def from_pretrained(
        cls, pretrained_model_name, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
    ):
thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
431
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
432
433
434
435
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
436
437
438
439
440
441
442
443
444
445
446
447
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
448
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
449
450
451
452
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
453
454
455
                    pretrained_model_name, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file
                )
            )
thomwolf's avatar
thomwolf committed
456
457
458
459
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
460
            logger.info("loading archive file {} from cache at {}".format(archive_file, resolved_archive_file))
thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
467
468
            logger.info("extracting archive file {} to temp dir {}".format(resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, "r:gz") as archive:
thomwolf's avatar
thomwolf committed
469
470
471
472
473
474
475
476
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = OpenAIGPTConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
477
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
478
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
479
480
481
482
483
484
485
            state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None)
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
            return load_tf_weights_in_openai_gpt(model, serialization_dir)
thomwolf's avatar
thomwolf committed
486
487
488
489
490

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
491
492
493
494
495
496
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
497
498
499
500
501
502
503
504
505
506
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
507
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
508
509
510
511
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

512
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
513
514
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
515
516
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
517
518
            for name, child in module._modules.items():
                if child is not None:
519
520
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
521
522
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
523
524
525
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
526
        if len(missing_keys) > 0:
527
528
529
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
530
        if len(unexpected_keys) > 0:
531
532
533
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
534
        if len(error_msgs) > 0:
535
536
537
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
thomwolf's avatar
thomwolf committed
538
        # Add additional embeddings for special tokens if needed
539
540
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
541
        return model
thomwolf's avatar
thomwolf committed
542
543


thomwolf's avatar
thomwolf committed
544
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
545
546
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

547
548
549
550
551
552
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
553
554
555
556
557
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
558
         config.vocab_size + config.n_special - 1]                  ______________________
559

560
561
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
562
563
564
565
566
567
568
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
569
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
570
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
571
            with the position indices (selected in the range [0, config.n_positions - 1[.
572
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
573
574
575
576
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
594

595
596
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
597
598
599
        num_tokens = config.vocab_size + config.n_special
        self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
600
601
602
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
603

thomwolf's avatar
thomwolf committed
604
605
606
607
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
608
609
610
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
611
612
613
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
614
        old_embed = self.tokens_embed
615
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
616
        # Initialize all new embeddings (in particular the special tokens)
617
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
618
        # Copy word and positional embeddings from the previous weights
619
620
        self.tokens_embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
        self.tokens_embed.weight.data[-self.config.n_positions :, :] = old_embed.weight.data[-self.config.n_positions :, :]
thomwolf's avatar
thomwolf committed
621

thomwolf's avatar
thomwolf committed
622
623
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
624
625
626
627
628
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

635
636
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
637
638
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
639
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
640
641
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
642
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
643
644
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
645
        for block in self.h:
thomwolf's avatar
thomwolf committed
646
            hidden_states = block(hidden_states)
thomwolf's avatar
thomwolf committed
647
648
        output_shape = input_shape + (hidden_states.size(-1),)
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
649

650

thomwolf's avatar
thomwolf committed
651
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
652
653
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

654
655
656
657
658
659
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
660
661
662
663
664
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
665
         config.vocab_size + config.n_special - 1]                  ______________________
666

667
668
669
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
670
671
672
673
674
675

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
676
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
677
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
678
            with the position indices (selected in the range [0, config.n_positions - 1[.
679
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
680
681
682
683
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
684
685
686
687
688
689
690
691
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
692
693
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
694
695
696
697
698
699
700
701
702
703
704
705

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
706

707
708
709
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
710
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
711
712
713
714
715
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
716
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
717
718
719
720
721

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
722
723
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
724
725
            return loss
        return lm_logits
thomwolf's avatar
thomwolf committed
726

727

thomwolf's avatar
thomwolf committed
728
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
729
730
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

731
732
733
734
735
736
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
737
738
739
740
741
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
742
         config.vocab_size + config.n_special - 1]                  ______________________
743

744
745
746
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
747
748
749
750
751

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
752
753
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
754
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
755
            with the position indices (selected in the range [0, config.n_positions - 1[.
756
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
757
758
759
760
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
761
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
762
763
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
764
765
766
767
768
769
770
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
771
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
772
773
774
775
776
777
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
778
    mc_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
779
780
781
782

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
783
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_mask)
784
785
    ```
    """
786

787
788
789
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
790
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
791
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
792
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
793

thomwolf's avatar
thomwolf committed
794
795
796
    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
797
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
thomwolf's avatar
thomwolf committed
798

799
    def forward(self, input_ids, mc_token_mask, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
800
801
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
802
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_mask)
thomwolf's avatar
thomwolf committed
803
804
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
805
806
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
807
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
808
            loss_fct = CrossEntropyLoss()
809
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
810
811
        if losses:
            return losses
812
        return lm_logits, mc_logits