modeling_openai.py 45.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
import math
import os
thomwolf's avatar
thomwolf committed
26
27
import sys
from io import open
thomwolf's avatar
thomwolf committed
28
29
30

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
32
33
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
35
from .modeling import BertLayerNorm as LayerNorm
36
from .modeling_gpt2 import prune_conv1d_layer
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
41
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
45
46
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54
55
56
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
57
    # This was used when we had a single embedding matrix for positions and tokens
58
59
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
60
61
62
    init_params = [arr.squeeze() for arr in init_params]

    try:
63
64
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
65
    except AssertionError as e:
66
67
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
68
69
        raise

70
71
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
72
    names.pop(0)
73
74
    # Pop position and token embedding arrays
    init_params.pop(0)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


122
123
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
124

thomwolf's avatar
thomwolf committed
125
126
127
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
128
129
130
131
132

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
133
        n_positions=512,
134
135
136
137
138
139
140
141
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
142
        layer_norm_epsilon=1e-5,
143
        initializer_range=0.02,
144
        predict_special_tokens=True
145
    ):
thomwolf's avatar
thomwolf committed
146
147
148
149
150
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
151
152
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
153
154
155
156
157
158
159
160
161
162
163
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
164
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
165
166
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
167
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
168
        """
thomwolf's avatar
thomwolf committed
169
170
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
171
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
172
173
174
175
176
177
178
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
179
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
187
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
188
            self.initializer_range = initializer_range
189
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
190
        else:
191
192
193
194
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
195
196

    @property
197
198
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
205
206
207
208
209
210

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
211
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

227
228
229
230
231
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

232

thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
241
242
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
249
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
250
251
252
253
254
255
256
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
257
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
258
259
260
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
261
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
262
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
263
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
264
265
        self.split_size = n_state
        self.scale = scale
266

thomwolf's avatar
thomwolf committed
267
        self.output_attentions = output_attentions
268
269
270
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
271
272
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
273
274
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
275

276
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
277
278
        if len(heads) == 0:
            return
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
293
294
295
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
296
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
297
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
298
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
299
300
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
301
302
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
303
304
305
306
307

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
308
309
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

325
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
326
327
328
329
330
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
331
332
333
334
335
336

        a = self._attn(query, key, value, head_mask)
        if self.keep_multihead_output:
            self.multihead_output = a
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
337
338
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
339
340
341
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
342
343
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
344
345
346
347
        return a


class MLP(nn.Module):
348
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
349
        super(MLP, self).__init__()
350
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
351
352
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
353
354
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
355
356
357
358
359
360
361
362

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
363
    def __init__(self, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
364
        super(Block, self).__init__()
365
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
366
        self.output_attentions = output_attentions
367
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions, keep_multihead_output)
368
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
369
        self.mlp = MLP(4 * nx, config)
370
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
371

372
373
    def forward(self, x, head_mask=None):
        a = self.attn(x, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
374
375
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
376
377
378
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
379
380
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
381
382
383
        return h


thomwolf's avatar
thomwolf committed
384
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
385
386
    """ Language Model Head for the transformer """

387
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
388
        super(OpenAIGPTLMHead, self).__init__()
389
        self.n_embd = config.n_embd
390
391
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
392
393
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
394
395
        self.set_embeddings_weights(model_embeddings_weights)

396
397
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
398
        embed_shape = model_embeddings_weights.shape
399
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
400

thomwolf's avatar
thomwolf committed
401
402
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
403
404
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
405
406
407
        return lm_logits


thomwolf's avatar
thomwolf committed
408
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
409
410
    """ Classifier Head for the transformer """

411
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
412
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
413
414
415
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
416

417
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
418
419
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
420
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
421
        # Classification logits
thomwolf's avatar
thomwolf committed
422
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
423
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
424
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
425
426
427
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
428
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
429
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
430
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
431
432
433
434
435
436
437
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
438

thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
447
448
                )
            )
thomwolf's avatar
thomwolf committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
463

thomwolf's avatar
thomwolf committed
464
    @classmethod
465
    def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
466
467
468
469
470
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
471
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
472
473
474
475
476
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
477
                - a path or url to a pretrained model archive containing:
478
                    . `openai-gpt-config.json` a configuration file for the model
479
480
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
481
482
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
483
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
484
        """
485
486
487
488
489
490
491
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
492
493
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
494
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
495
        else:
thomwolf's avatar
thomwolf committed
496
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
497
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
498
499
500
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
501
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
thomwolf's avatar
thomwolf committed
509
                    "We assumed '{}' was a path or url but couldn't find file {} "
thomwolf's avatar
thomwolf committed
510
511
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                        archive_file
                    )
                )
            return None
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find file {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                        config_file
thomwolf's avatar
thomwolf committed
530
                    )
531
                )
thomwolf's avatar
thomwolf committed
532
            return None
533
534
535
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
536
        else:
537
538
539
540
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
541
        # Load config
542
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
543
544
545
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
546
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
547
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
548
549
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
550
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
551
552
553
554
555

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
556
557
558
559
560
561
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
562
563
564
565
566
567
568
569
570
571
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
572
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
573
574
575
576
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

577
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
578
579
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
580
581
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
582
583
            for name, child in module._modules.items():
                if child is not None:
584
585
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
586
587
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
588
589
590
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
591
        if len(missing_keys) > 0:
592
593
594
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
595
        if len(unexpected_keys) > 0:
596
597
598
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
599
        if len(error_msgs) > 0:
600
601
602
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
603

thomwolf's avatar
thomwolf committed
604
        # Add additional embeddings for special tokens if needed
605
606
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
607
        return model
thomwolf's avatar
thomwolf committed
608
609


thomwolf's avatar
thomwolf committed
610
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
611
612
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

613
614
615
616
617
618
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
619
620
621
622
623
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
624
         config.vocab_size + config.n_special - 1]                  ______________________
625

626
627
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
628
629
630
    You should use the associate indices to index the embeddings.

    Params:
631
632
633
634
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
635
636
637

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
638
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
639
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
640
            with the position indices (selected in the range [0, config.n_positions - 1[.
641
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
642
643
644
645
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
646
647
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
648
649

    Outputs:
650
651
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
652
653
654
655
656
657
658
659
660
661
662
663
664
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
665

666
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
667
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
668
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
669
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
670
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
671
        self.drop = nn.Dropout(config.embd_pdrop)
672
673
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions,
                                                        keep_multihead_output=keep_multihead_output)
674
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
675

thomwolf's avatar
thomwolf committed
676
677
678
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
679
680
681
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
682
683
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
684
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
685
        old_embed = self.tokens_embed
686
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
687
        self.tokens_embed.to(old_embed.weight.device)
688
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
689
690
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [h.attn.multihead_output for h in self.h]

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
706
        if position_ids is None:
707
708
709
710
711
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
712
713
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

714
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
715
        # 1.0 in head_mask indicate we keep the head
716
        # attention_probs has shape bsz x n_heads x N x N
717
        # head_mask has shape n_layer x batch x n_heads x N x N
718
719
        if head_mask is not None:
            if head_mask.dim() == 1:
720
721
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.n_layer, -1, -1, -1, -1)
722
            elif head_mask.dim() == 2:
723
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
724
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
725
726
        else:
            head_mask = [None] * self.config.n_layer
727

thomwolf's avatar
thomwolf committed
728
729
730
731
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

732
733
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
734
735
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
736
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
737
738
739
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
740
741
        hidden_states = self.drop(hidden_states)

742
743
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
744
        all_attentions = []
745
        all_hidden_states = [hidden_states.view(*output_shape)]
746
747
        for i, block in enumerate(self.h):
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
748
            if self.output_attentions:
749
                attentions, hidden_states = outputs
thomwolf's avatar
thomwolf committed
750
751
                all_attentions.append(attentions)
            else:
752
                hidden_states = outputs
753
754
            all_hidden_states.append(hidden_states.view(*output_shape))

thomwolf's avatar
thomwolf committed
755
        if self.output_attentions:
756
757
            return all_attentions, all_hidden_states
        return all_hidden_states
thomwolf's avatar
thomwolf committed
758

759

thomwolf's avatar
thomwolf committed
760
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
761
762
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

763
764
765
766
767
768
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
769
770
771
772
773
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
774
         config.vocab_size + config.n_special - 1]                  ______________________
775

776
777
778
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
779
780

    Params:
781
782
783
784
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
785
786
787

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
788
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
789
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
790
            with the position indices (selected in the range [0, config.n_positions - 1[.
791
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
792
793
794
795
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
796
797
798
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
799
800
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
801
802
803
804
805

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
806
807
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
808
809
810
811
812
813
814
815
816
817
818
819

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
820

821
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
822
        super(OpenAIGPTLMHeadModel, self).__init__(config)
823
824
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
825
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
826
827
        self.apply(self.init_weights)

828
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
829
830
831
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
832
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
833
        self.transformer.set_num_special_tokens(num_special_tokens)
834
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
835

836
837
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
838
839
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
840
841
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
842
843
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
844
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
845
846
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
847
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
848
            loss_fct = CrossEntropyLoss(ignore_index=-1)
849
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
850
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
851
            return loss
thomwolf's avatar
thomwolf committed
852
853
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
854
        return lm_logits
thomwolf's avatar
thomwolf committed
855

856

thomwolf's avatar
thomwolf committed
857
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
858
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
859

860
861
862
863
864
865
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
866
867
868
869
870
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
871
         config.vocab_size + config.n_special - 1]                  ______________________
872

873
874
875
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
876
877

    Params:
878
879
880
881
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
882
883

    Inputs:
thomwolf's avatar
thomwolf committed
884
885
886
887
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
888
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
889
            with the position indices (selected in the range [0, config.n_positions - 1[.
890
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
891
892
893
894
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
895
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
896
897
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
898
899
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
900
901
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
902
903
904
905
906

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
907
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
908
909
910
911
912
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
913
914
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
915
916
917

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
918
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
919
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
920
921
    ```
    """
922

923
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
924
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
925
926
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
927
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
928
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
929
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
930

931
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
932
933
934
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
935
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
936
        self.transformer.set_num_special_tokens(num_special_tokens)
937
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
938

939
940
941
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
942
943
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
944
945
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
946
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
947
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
948
949
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
950
951
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
952
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
953
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
954
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
955
            loss_fct = CrossEntropyLoss()
956
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
957
958
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
959
960
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
961
        return lm_logits, mc_logits