modeling_openai.py 34.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

thomwolf's avatar
thomwolf committed
18
import os
thomwolf's avatar
thomwolf committed
19
20
21
import copy
import json
import math
thomwolf's avatar
thomwolf committed
22
23
24
25
import logging
import tarfile
import tempfile
import shutil
thomwolf's avatar
thomwolf committed
26
27
28
29
import collections

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
33
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
34
from .file_utils import cached_path
35
from .convert_openai_checkpoint_to_pytorch import load_tf_weights_in_openai_gpt
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
40
41
42
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt.tar.gz"}
CONFIG_NAME = "openai_gpt_config.json"
WEIGHTS_NAME = "pytorch_model.bin"

thomwolf's avatar
thomwolf committed
43
44
45
46
47
48
49
50
51

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


52
53
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
54

thomwolf's avatar
thomwolf committed
55
56
57
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        initializer_range=0.02,
    ):
thomwolf's avatar
thomwolf committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
            n_ctx: Number of positional embeddings.
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        if isinstance(vocab_size_or_config_json_file, str):
94
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
            self.initializer_range = initializer_range
        else:
111
112
113
114
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    @property
    def total_num_embeddings(self):
        return self.vocab_size + self.n_special + self.n_ctx

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
131
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

147

thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
156
157
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
158
159
160
161
162
163
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
164
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
165
166
167
168
169
170
171
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
172
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
173
174
175
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
176
        assert n_state % config.n_head == 0
177
        self.register_buffer("b", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
178
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
179
180
181
182
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
183
184
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
185
186
187
188
189

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
190
191
        # w = w * self.b + -1e9 * (1 - self.b)  # TF implem method: mask_attn_weights
        # XD: self.b may be larger than w, so we need to crop it
192
        b = self.b[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
193
194
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
226
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
227
        super(MLP, self).__init__()
228
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
229
230
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
231
232
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
241
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
242
        super(Block, self).__init__()
243
244
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
245
        self.ln_1 = LayerNorm(nx)
246
        self.mlp = MLP(4 * nx, config)
thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
253
254
255
256
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


thomwolf's avatar
thomwolf committed
257
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
258
259
    """ Language Model Head for the transformer """

260
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
261
        super(OpenAIGPTLMHead, self).__init__()
262
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
263
264
265
266
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
thomwolf's avatar
thomwolf committed
267
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
268
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
269

thomwolf's avatar
thomwolf committed
270
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
271
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
272
273
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
274
275
276
        return lm_logits


thomwolf's avatar
thomwolf committed
277
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
278
279
    """ Classifier Head for the transformer """

280
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
281
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
282
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
283
        # self.multiple_choice_token = multiple_choice_token
284
285
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
286

287
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
288
289
        nn.init.normal_(self.linear.bias, 0)

290
    def forward(self, hidden_states, mc_token_mask):
thomwolf's avatar
thomwolf committed
291
        # Classification logits
thomwolf's avatar
thomwolf committed
292
        # hidden_states = hidden_states.view(-1, self.n_embd)
293
294
295
        # mc_token_mask = mc_token_mask.view(-1, 1).expand_as(hidden_states)
        mc_token_mask = mc_token_mask.float()
        multiple_choice_h = hidden_states * mc_token_mask.unsqueeze(-1)
thomwolf's avatar
thomwolf committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
314

thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
323
324
                )
            )
thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
339

thomwolf's avatar
thomwolf committed
340
341
342
343
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
344
345
346
    def from_pretrained(
        cls, pretrained_model_name, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
    ):
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
355
356
357
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
358
359
360
361
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
379
380
381
                    pretrained_model_name, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file
                )
            )
thomwolf's avatar
thomwolf committed
382
383
384
385
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
386
            logger.info("loading archive file {} from cache at {}".format(archive_file, resolved_archive_file))
thomwolf's avatar
thomwolf committed
387
388
389
390
391
392
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
393
394
            logger.info("extracting archive file {} to temp dir {}".format(resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, "r:gz") as archive:
thomwolf's avatar
thomwolf committed
395
396
397
398
399
400
401
402
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = OpenAIGPTConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
403
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
404
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
405
406
407
408
409
410
411
            state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None)
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
            return load_tf_weights_in_openai_gpt(model, serialization_dir)
thomwolf's avatar
thomwolf committed
412
413
414
415
416

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
417
418
419
420
            if "gamma" in key:
                new_key = key.replace("gamma", "weight")
            if "beta" in key:
                new_key = key.replace("beta", "bias")
thomwolf's avatar
thomwolf committed
421
422
423
424
425
426
427
428
429
430
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
431
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
432
433
434
435
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

436
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
437
438
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
439
440
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
441
442
            for name, child in module._modules.items():
                if child is not None:
443
444
445
                    load(child, prefix + name + ".")

        load(model.transformer if hasattr(model, "transformer") else model, prefix="")
thomwolf's avatar
thomwolf committed
446
        if len(missing_keys) > 0:
447
448
449
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
450
        if len(unexpected_keys) > 0:
451
452
453
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
454
        if len(error_msgs) > 0:
455
456
457
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
thomwolf's avatar
thomwolf committed
458
        # Add additional embeddings for special tokens if needed
459
        if num_special_tokens is not None and num_special_tokens != config.n_special:
thomwolf's avatar
thomwolf committed
460
461
            model.set_num_special_tokens(num_special_tokens)
        return model
thomwolf's avatar
thomwolf committed
462
463


thomwolf's avatar
thomwolf committed
464
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

    The main implementation difference between BERT and the OpenAI is the use, in OpenAI GPT, of a single embedding matrix
    to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use the associate indices to index the embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
515

516
517
518
519
520
521
522
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
        total_embeddings_size = config.vocab_size + config.n_special + config.n_ctx
        self.embed = nn.Embedding(total_embeddings_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
523

thomwolf's avatar
thomwolf committed
524
525
526
527
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
thomwolf's avatar
thomwolf committed
528
        " Update input embeddings with new embedding matrice "
thomwolf's avatar
thomwolf committed
529
530
531
532
533
534
535
536
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
        old_embed = self.embed
        self.embed = nn.Embedding(self.config.total_num_embeddings, self.config.n_embd)
        # Initialize all new embeddings (in particular the special tokens)
        self.init_weights(self.embed)
        # Copy word and positional embeddings from the previous weights
537
538
        self.embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
        self.embed.weight.data[-self.config.n_ctx :, :] = old_embed.weight.data[-self.config.n_ctx :, :]
thomwolf's avatar
thomwolf committed
539

thomwolf's avatar
thomwolf committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
            start = self.config.vocab_size + self.config.n_special
            end = start + input_ids.size(-1)
            position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.embed(input_ids)
        position_embeds = self.embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.embed(token_type_ids)
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
558
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
559
560
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
561
        for block in self.h:
thomwolf's avatar
thomwolf committed
562
563
            hidden_states = block(hidden_states)
        return hidden_states.view(*input_shape, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
564

565

thomwolf's avatar
thomwolf committed
566
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_num_embeddings]
                (or more generally [d_1, ..., d_n, total_num_embeddings] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
624

625
626
627
628
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
635
636
637
638
639
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
640
641
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
642
643
            return loss
        return lm_logits
thomwolf's avatar
thomwolf committed
644

645

thomwolf's avatar
thomwolf committed
646
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word BPE token indices selected in the range [0, config.vocab_size[
677
        `mc_token_mask`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
            with a value of 1 were the last hidden state is (usually the [CLS] token) and 0 otherwise.
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special,
            config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., total_num_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_num_embeddings]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_num_embeddings]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
702
    mc_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
703
704
705
706

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
707
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_mask)
708
709
    ```
    """
710

711
712
713
714
715
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
716
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
717

thomwolf's avatar
thomwolf committed
718
719
720
721
    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)
thomwolf's avatar
thomwolf committed
722

723
    def forward(self, input_ids, mc_token_mask, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
724
725
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
726
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_mask)
thomwolf's avatar
thomwolf committed
727
728
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
729
730
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
731
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
732
            loss_fct = CrossEntropyLoss()
733
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
734
735
        if losses:
            return losses
736
        return lm_logits, mc_logits