"git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "3b1d5cd4d48ce733ce4f4d32c950da9a998d42b0"
Commit 45709d75 authored by thomwolf's avatar thomwolf
Browse files

model running with simple inputs

parent b407972e
...@@ -17,6 +17,9 @@ from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHe ...@@ -17,6 +17,9 @@ from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHe
from .modeling_gpt2 import (GPT2Config, GPT2Model, from .modeling_gpt2 import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2MultipleChoiceHead, GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2MultipleChoiceHead,
load_tf_weights_in_gpt2) load_tf_weights_in_gpt2)
from .modeling_xlnet import (XLNetBaseConfig, XLNetConfig, XLNetRunConfig,
XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel,
load_tf_weights_in_xlnet)
from .optimization import BertAdam from .optimization import BertAdam
from .optimization_openai import OpenAIAdam from .optimization_openai import OpenAIAdam
......
...@@ -21,13 +21,13 @@ from __future__ import print_function ...@@ -21,13 +21,13 @@ from __future__ import print_function
import argparse import argparse
import torch import torch
from pytorch_pretrained_bert.modeling_xlnet import XLNetConfig, XLNetRunConfig, XLNetModel, load_tf_weights_in_xlnet from pytorch_pretrained_bert.modeling_xlnet import XLNetConfig, XLNetRunConfig, XLNetLMHeadModel, load_tf_weights_in_xlnet
def convert_xlnet_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): def convert_xlnet_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model # Initialise PyTorch model
config = XLNetConfig.from_json_file(bert_config_file) config = XLNetConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config))) print("Building PyTorch model from configuration: {}".format(str(config)))
model = XLNetModel(config) model = XLNetLMHeadModel(config)
# Load weights from tf checkpoint # Load weights from tf checkpoint
load_tf_weights_in_xlnet(model, tf_checkpoint_path) load_tf_weights_in_xlnet(model, tf_checkpoint_path)
......
...@@ -867,7 +867,7 @@ class BertModel(BertPreTrainedModel): ...@@ -867,7 +867,7 @@ class BertModel(BertPreTrainedModel):
if head_mask is not None: if head_mask is not None:
if head_mask.dim() == 1: if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2: elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
......
...@@ -722,7 +722,7 @@ class GPT2Model(GPT2PreTrainedModel): ...@@ -722,7 +722,7 @@ class GPT2Model(GPT2PreTrainedModel):
if head_mask is not None: if head_mask is not None:
if head_mask.dim() == 1: if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.n_layer, -1, -1, -1, -1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2: elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
......
...@@ -718,7 +718,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel): ...@@ -718,7 +718,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
if head_mask is not None: if head_mask is not None:
if head_mask.dim() == 1: if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand_as(self.config.n_layer, -1, -1, -1, -1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2: elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
......
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import unittest
import json
import random
import shutil
import pytest
import torch
from pytorch_pretrained_bert import (XLNetConfig, XLNetRunConfig, XLNetModel, XLNetLMHeadModel)
from pytorch_pretrained_bert.modeling_xlnet import PRETRAINED_MODEL_ARCHIVE_MAP
class XLNetModelTest(unittest.TestCase):
class XLNetModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
mem_len=30,
clamp_len=15,
reuse_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
d_model=32,
n_head=4,
d_inner=128,
n_layer=5,
max_position_embeddings=10,
untie_r=True,
bi_data=False,
same_length=False,
seed=1,
type_vocab_size=2):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.clamp_len = clamp_len
self.reuse_len = reuse_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.d_model = d_model
self.n_head = n_head
self.d_inner = d_inner
self.n_layer = n_layer
self.max_position_embeddings = max_position_embeddings
self.bi_data = bi_data
self.untie_r = untie_r
self.same_length = same_length
self.seed = seed
self.type_vocab_size = type_vocab_size
def prepare_config_and_inputs(self):
input_ids_1 = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)
input_ids_2 = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)
segment_ids = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.type_vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)
config = XLNetConfig(
vocab_size_or_config_json_file=self.vocab_size,
d_model=self.d_model,
n_head=self.n_head,
d_inner=self.d_inner,
n_layer=self.n_layer,
untie_r=self.untie_r,
max_position_embeddings=self.max_position_embeddings)
run_config = XLNetRunConfig(
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data)
config.update(run_config)
return (config, input_ids_1, input_ids_2, segment_ids, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, segment_ids, lm_labels):
model = XLNetLMHeadModel(config)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1, seg_id=segment_ids)
hidden_states_2, mems_2 = model(input_ids_2, seg_id=segment_ids, mems=mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()),
[self.seq_length, self.batch_size, self.d_model])
self.parent.assertListEqual(
list(result["hidden_states_2"].size()),
[self.seq_length, self.batch_size, self.d_model])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, segment_ids, lm_labels):
model = XLNetLMHeadModel(config)
model.eval()
loss_1, mems_1a = model(input_ids_1, target=lm_labels)
lm_logits_1, mems_1b = model(input_ids_1)
loss_2, mems_2a = model(input_ids_2, target=lm_labels, mems=mems_1a)
lm_logits_2, mems_2b = model(input_ids_2, mems=mems_1b)
outputs = {
"loss_1": loss_1,
"mems_1a": mems_1a,
"lm_logits_1": lm_logits_1,
"mems_1b": mems_1b,
"loss_2": loss_2,
"mems_2a": mems_2a,
"lm_logits_2": lm_logits_2,
"mems_2b": mems_2b,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(
list(result["loss_1"].size()),
[self.seq_length, self.batch_size])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()),
[self.seq_length, self.batch_size, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1b"]))
self.parent.assertListEqual(
list(result["loss_2"].size()),
[self.seq_length, self.batch_size])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()),
[self.seq_length, self.batch_size, self.vocab_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2a"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2b"]),
[[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
self.parent.assertListEqual(
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2a"]),
list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2b"]))
def test_default(self):
self.run_tester(XLNetModelTest.XLNetModelTester(self))
def test_config_to_json_string(self):
config = XLNetConfig(vocab_size_or_config_json_file=96, d_model=37)
obj = json.loads(config.to_json_string())
self.assertEqual(obj["n_token"], 96)
self.assertEqual(obj["d_model"], 37)
def test_config_to_json_file(self):
config_first = XLNetConfig(vocab_size_or_config_json_file=96, d_model=37)
json_file_path = "/tmp/config.json"
config_first.to_json_file(json_file_path)
config_second = XLNetConfig.from_json_file(json_file_path)
os.remove(json_file_path)
self.assertEqual(config_second.to_dict(), config_first.to_dict())
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/pytorch_pretrained_bert_test/"
for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = XLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
def run_tester(self, tester):
config_and_inputs = tester.prepare_config_and_inputs()
tester.set_seed()
output_result = tester.create_transfo_xl_model(*config_and_inputs)
tester.check_transfo_xl_model_output(output_result)
tester.set_seed()
output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
tester.check_transfo_xl_lm_head_output(output_result)
@classmethod
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment