modeling_openai.py 38.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
import math
import os
thomwolf's avatar
thomwolf committed
26
27
import sys
from io import open
thomwolf's avatar
thomwolf committed
28
29
30

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
32
33
from torch.nn.parameter import Parameter

34
from .file_utils import cached_path
35
from .model_utils import Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_conv1d_layer
36
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
37

thomwolf's avatar
thomwolf committed
38
39
logger = logging.getLogger(__name__)

40
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
41
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
42

43

44
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
45
46
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
47
48
    import re
    import numpy as np
49
50
51
52
53
54

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

55
56
57
58
59
60
61
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
62
    # This was used when we had a single embedding matrix for positions and tokens
63
64
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
65
66
67
    init_params = [arr.squeeze() for arr in init_params]

    try:
68
69
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
70
    except AssertionError as e:
71
72
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
73
74
        raise

75
76
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
77
    names.pop(0)
78
79
    # Pop position and token embedding arrays
    init_params.pop(0)
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
126

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


127
128
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
129

130
class OpenAIGPTConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
131
132
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
133
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
134
135
136
137
138

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
139
        n_positions=512,
140
141
142
143
144
145
146
147
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
148
        layer_norm_epsilon=1e-5,
149
        initializer_range=0.02,
150
        predict_special_tokens=True
151
    ):
thomwolf's avatar
thomwolf committed
152
153
154
155
156
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
157
158
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
159
160
161
162
163
164
165
166
167
168
169
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
170
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
171
172
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
173
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
174
        """
thomwolf's avatar
thomwolf committed
175
176
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
177
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
178
179
180
181
182
183
184
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
185
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
193
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
194
            self.initializer_range = initializer_range
195
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
196
        else:
197
198
199
200
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
201
202

    @property
203
204
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
205

thomwolf's avatar
thomwolf committed
206
207

class Attention(nn.Module):
208
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
209
210
211
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
212
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
213
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
214
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
215
216
        self.split_size = n_state
        self.scale = scale
217

thomwolf's avatar
thomwolf committed
218
        self.output_attentions = output_attentions
219
220
221
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

222
223
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
224
225
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
226

227
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
228
229
        if len(heads) == 0:
            return
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
244
245
246
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
247
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
248
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
249
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
250
251
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
252
253
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
254
255
256
257
258

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
259
260
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

276
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
277
278
279
280
281
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
282
283
284
285
286
287

        a = self._attn(query, key, value, head_mask)
        if self.keep_multihead_output:
            self.multihead_output = a
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
288
289
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
290
291
292
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
293
294
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
295
296
297
298
        return a


class MLP(nn.Module):
299
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
300
        super(MLP, self).__init__()
301
        nx = config.n_embd
302
303
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
304
305
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
306
307
308
309
310
311
312
313

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
314
    def __init__(self, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
315
        super(Block, self).__init__()
316
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
317
        self.output_attentions = output_attentions
318
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions, keep_multihead_output)
319
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
320
        self.mlp = MLP(4 * nx, config)
321
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
322

323
324
    def forward(self, x, head_mask=None):
        a = self.attn(x, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
325
326
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
327
328
329
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
330
331
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
332
333
334
        return h


thomwolf's avatar
thomwolf committed
335
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
336
337
    """ Language Model Head for the transformer """

338
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
339
        super(OpenAIGPTLMHead, self).__init__()
340
        self.n_embd = config.n_embd
341
342
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
343
344
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
345
346
        self.set_embeddings_weights(model_embeddings_weights)

347
348
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
349
        embed_shape = model_embeddings_weights.shape
350
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
353
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
354
355
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
356
357
358
        return lm_logits


thomwolf's avatar
thomwolf committed
359
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
360
361
    """ Classifier Head for the transformer """

362
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
363
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
364
365
366
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
367

368
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
369
370
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
371
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
372
        # Classification logits
thomwolf's avatar
thomwolf committed
373
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
374
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
375
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
376
377
378
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
379
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
380
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
381
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
382
383
384
        return multiple_choice_logits


385
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
386
387
388
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
389
390
391
392
393
    config_class = OpenAIGPTConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
394

395
396
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
397
398
399
400
401
402
403
404
405
406
407
408
409

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
410

thomwolf's avatar
thomwolf committed
411
    @classmethod
412
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
413
414
415
416
417
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
418
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
419
420
                - a str with the name of a pre-trained model to load selected in the list of:
                - a path or url to a pretrained model archive containing:
421
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
422
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
423
                - a path or url to a pretrained model archive containing:
424
                    . `config.json` a configuration file for the model
425
426
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
427
428
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
429
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
430
        """
431
432
433
434
        num_special_tokens = kwargs.get('num_special_tokens', None)
        kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
435

thomwolf's avatar
thomwolf committed
436
        # Add additional embeddings for special tokens if needed
437
        # This step also make sure we are still sharing the output and input embeddings after loading weights
438
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
439
        return model
thomwolf's avatar
thomwolf committed
440
441


thomwolf's avatar
thomwolf committed
442
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
443
444
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

445
446
447
448
449
450
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
451
452
453
454
455
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
456
         config.vocab_size + config.n_special - 1]                  ______________________
457

458
459
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
460
461
462
    You should use the associate indices to index the embeddings.

    Params:
463
464
465
466
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
467
468
469

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
470
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
471
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
472
            with the position indices (selected in the range [0, config.n_positions - 1[.
473
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
474
475
476
477
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
478
479
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
480
481

    Outputs:
482
483
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
484
485
486
487
488
489
490
491
492
493
494
495
496
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
497

498
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
499
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
500
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
501
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
502
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
503
        self.drop = nn.Dropout(config.embd_pdrop)
504
505
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions,
                                                        keep_multihead_output=keep_multihead_output)
506
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
507

thomwolf's avatar
thomwolf committed
508
509
        self.apply(self.init_weights)

510
    def set_num_special_tokens(self, num_special_tokens=None):
511
        " Update input embeddings with new embedding matrice if needed "
512
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
513
            return
thomwolf's avatar
thomwolf committed
514
515
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
516
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
517
        old_embed = self.tokens_embed
518
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
519
        self.tokens_embed.to(old_embed.weight.device)
520
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
521
522
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [h.attn.multihead_output for h in self.h]

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
538
        if position_ids is None:
539
540
541
542
543
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
544
545
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

546
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
547
        # 1.0 in head_mask indicate we keep the head
548
        # attention_probs has shape bsz x n_heads x N x N
549
        # head_mask has shape n_layer x batch x n_heads x N x N
550
551
        if head_mask is not None:
            if head_mask.dim() == 1:
552
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
553
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
554
            elif head_mask.dim() == 2:
555
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
556
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
557
558
        else:
            head_mask = [None] * self.config.n_layer
559

thomwolf's avatar
thomwolf committed
560
561
562
563
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

564
565
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
566
567
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
568
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
569
570
571
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
572
573
        hidden_states = self.drop(hidden_states)

574
575
        output_shape = input_shape + (hidden_states.size(-1),)

thomwolf's avatar
thomwolf committed
576
        all_attentions = []
577
        all_hidden_states = [hidden_states.view(*output_shape)]
578
579
        for i, block in enumerate(self.h):
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
580
            if self.output_attentions:
581
                attentions, hidden_states = outputs
thomwolf's avatar
thomwolf committed
582
583
                all_attentions.append(attentions)
            else:
584
                hidden_states = outputs
585
586
            all_hidden_states.append(hidden_states.view(*output_shape))

thomwolf's avatar
thomwolf committed
587
        if self.output_attentions:
588
589
            return all_attentions, all_hidden_states
        return all_hidden_states
thomwolf's avatar
thomwolf committed
590

591

thomwolf's avatar
thomwolf committed
592
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
593
594
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

595
596
597
598
599
600
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
601
602
603
604
605
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
606
         config.vocab_size + config.n_special - 1]                  ______________________
607

608
609
610
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
611
612

    Params:
613
614
615
616
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
617
618
619

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
620
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
621
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
622
            with the position indices (selected in the range [0, config.n_positions - 1[.
623
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
624
625
626
627
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
628
629
630
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
631
632
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
633
634
635
636
637

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
638
639
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
640
641
642
643
644
645
646
647
648
649
650
651

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
652

653
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
654
        super(OpenAIGPTLMHeadModel, self).__init__(config)
655
656
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
657
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
658
659
        self.apply(self.init_weights)

660
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
661
662
663
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
664
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
665
        self.transformer.set_num_special_tokens(num_special_tokens)
666
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
667

668
669
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
670
671
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
672
673
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
674
675
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
676
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
677
678
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
679
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
680
            loss_fct = CrossEntropyLoss(ignore_index=-1)
681
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
682
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
683
            return loss
thomwolf's avatar
thomwolf committed
684
685
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
686
        return lm_logits
thomwolf's avatar
thomwolf committed
687

688

thomwolf's avatar
thomwolf committed
689
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
690
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
691

692
693
694
695
696
697
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
698
699
700
701
702
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
703
         config.vocab_size + config.n_special - 1]                  ______________________
704

705
706
707
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
708
709

    Params:
710
711
712
713
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
714
715

    Inputs:
thomwolf's avatar
thomwolf committed
716
717
718
719
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
720
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
721
            with the position indices (selected in the range [0, config.n_positions - 1[.
722
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
723
724
725
726
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
727
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
728
729
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
730
731
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
732
733
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
734
735
736
737
738

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
739
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
740
741
742
743
744
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
745
746
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
747
748
749

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
750
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
751
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
752
753
    ```
    """
754

755
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
756
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
757
758
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
759
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
760
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
761
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
762

763
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
764
765
766
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
767
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
768
        self.transformer.set_num_special_tokens(num_special_tokens)
769
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
770

771
772
773
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
774
775
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
776
777
        hidden_states = hidden_states[-1]

thomwolf's avatar
thomwolf committed
778
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
779
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
780
781
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
782
783
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
784
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
785
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
786
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
787
            loss_fct = CrossEntropyLoss()
788
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
789
790
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
791
792
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
793
        return lm_logits, mc_logits