modeling_openai.py 39.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
26
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
27
28
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
29
30
import sys
from io import open
thomwolf's avatar
thomwolf committed
31
32
33

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
34
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
35
36
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
38
from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
39

thomwolf's avatar
thomwolf committed
40
41
logger = logging.getLogger(__name__)

42
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
43
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
44

45

46
47
48
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
49
50
    import re
    import numpy as np
51
52
53
54
55
56
57
58
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
59
    # This was used when we had a single embedding matrix for positions and tokens
60
61
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
62
63
64
    init_params = [arr.squeeze() for arr in init_params]

    try:
65
66
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
67
    except AssertionError as e:
68
69
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
70
71
        raise

72
73
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
74
    names.pop(0)
75
76
    # Pop position and token embedding arrays
    init_params.pop(0)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
121
122
123

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


124
125
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
126

thomwolf's avatar
thomwolf committed
127
128
129
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
130
131
132
133
134

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
135
        n_positions=512,
136
137
138
139
140
141
142
143
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
144
        layer_norm_epsilon=1e-5,
145
        initializer_range=0.02,
146
        predict_special_tokens=True
147
    ):
thomwolf's avatar
thomwolf committed
148
149
150
151
152
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
153
154
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
161
162
163
164
165
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
166
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
167
168
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
169
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
170
        """
thomwolf's avatar
thomwolf committed
171
172
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
173
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
181
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
189
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
190
            self.initializer_range = initializer_range
191
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
192
        else:
193
194
195
196
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
197
198

    @property
199
200
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
207
208
209
210
211
212

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
213
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

229
230
231
232
233
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

234

thomwolf's avatar
thomwolf committed
235
236
237
238
239
240
241
242
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
243
244
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
245
246
247
248
249
250
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
251
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
252
253
254
255
256
257
258
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
259
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
260
261
262
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
263
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
264
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
265
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
266
267
        self.split_size = n_state
        self.scale = scale
thomwolf's avatar
thomwolf committed
268
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
269
270
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
271
272
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
273
274
275
276
277

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
278
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
279
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
280
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
281
282
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
283
284
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
thomwolf's avatar
thomwolf committed
285
286
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
thomwolf's avatar
thomwolf committed
309
310
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
311
312
313
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
314
315
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
316
317
318
319
        return a


class MLP(nn.Module):
320
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
321
        super(MLP, self).__init__()
322
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
323
324
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
325
326
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
327
328
329
330
331
332
333
334

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
335
    def __init__(self, n_ctx, config, scale=False, output_attentions=False):
thomwolf's avatar
thomwolf committed
336
        super(Block, self).__init__()
337
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
338
339
        self.output_attentions = output_attentions
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions)
340
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
341
        self.mlp = MLP(4 * nx, config)
342
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
343
344
345

    def forward(self, x):
        a = self.attn(x)
thomwolf's avatar
thomwolf committed
346
347
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
348
349
350
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
351
352
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
353
354
355
        return h


thomwolf's avatar
thomwolf committed
356
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
357
358
    """ Language Model Head for the transformer """

359
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
360
        super(OpenAIGPTLMHead, self).__init__()
361
        self.n_embd = config.n_embd
362
363
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
364
365
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
366
367
        self.set_embeddings_weights(model_embeddings_weights)

368
369
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
370
        embed_shape = model_embeddings_weights.shape
371
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
372

thomwolf's avatar
thomwolf committed
373
374
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
375
376
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
377
378
379
        return lm_logits


thomwolf's avatar
thomwolf committed
380
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
381
382
    """ Classifier Head for the transformer """

383
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
384
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
385
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
386
        # self.multiple_choice_token = multiple_choice_token
387
388
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
389

390
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
391
392
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
393
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
394
        # Classification logits
thomwolf's avatar
thomwolf committed
395
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
396
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
397
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
398
399
400
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
401
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
402
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
403
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
404
405
406
407
408
409
410
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
411

thomwolf's avatar
thomwolf committed
412
413
414
415
416
417
418
419
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
420
421
                )
            )
thomwolf's avatar
thomwolf committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
436

thomwolf's avatar
thomwolf committed
437
    @classmethod
438
    def from_pretrained(
thomwolf's avatar
thomwolf committed
439
        cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
440
    ):
thomwolf's avatar
thomwolf committed
441
442
443
444
445
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
446
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
447
448
449
450
451
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
452
453
454
455
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
456
457
458
459
460
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
thomwolf's avatar
thomwolf committed
461
462
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
463
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
464
        else:
thomwolf's avatar
thomwolf committed
465
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
466
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
467
468
469
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
470
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
471
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
472
473
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
474
475
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
thomwolf's avatar
thomwolf committed
476
                    pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
477
                    archive_file, config_file
478
479
                )
            )
thomwolf's avatar
thomwolf committed
480
            return None
481
482
483
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
484
        else:
485
486
487
488
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
489
        # Load config
490
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
491
492
493
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
494
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
495
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
496
497
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
498
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
499
500
501
502
503

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515
516
517
518
519
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
520
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
521
522
523
524
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

525
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
526
527
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
528
529
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
530
531
            for name, child in module._modules.items():
                if child is not None:
532
533
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
534
535
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
536
537
538
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
539
        if len(missing_keys) > 0:
540
541
542
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
543
        if len(unexpected_keys) > 0:
544
545
546
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
547
        if len(error_msgs) > 0:
548
549
550
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
551

thomwolf's avatar
thomwolf committed
552
        # Add additional embeddings for special tokens if needed
553
554
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
555
        return model
thomwolf's avatar
thomwolf committed
556
557


thomwolf's avatar
thomwolf committed
558
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
559
560
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

561
562
563
564
565
566
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
567
568
569
570
571
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
572
         config.vocab_size + config.n_special - 1]                  ______________________
573

574
575
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
576
577
578
579
580
581
582
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
583
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
584
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
585
            with the position indices (selected in the range [0, config.n_positions - 1[.
586
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
587
588
589
590
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
608

thomwolf's avatar
thomwolf committed
609
    def __init__(self, config, output_attentions=False):
610
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
611
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
612
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
613
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
614
        self.drop = nn.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
615
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions)
616
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
617

thomwolf's avatar
thomwolf committed
618
619
620
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
621
622
623
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
624
625
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
626
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
627
        old_embed = self.tokens_embed
628
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
629
        self.tokens_embed.to(old_embed.weight.device)
630
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
631
632
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
633

thomwolf's avatar
thomwolf committed
634
635
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
636
637
638
639
640
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
641
642
643
644
645
646
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

647
648
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
649
650
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
651
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
652
653
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
654
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
655
656
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
657
        all_attentions = []
thomwolf's avatar
thomwolf committed
658
        for block in self.h:
thomwolf's avatar
thomwolf committed
659
660
661
662
663
            if self.output_attentions:
                attentions, hidden_states = block(hidden_states)
                all_attentions.append(attentions)
            else:
                hidden_states = block(hidden_states)
thomwolf's avatar
thomwolf committed
664
        output_shape = input_shape + (hidden_states.size(-1),)
thomwolf's avatar
thomwolf committed
665
666
        if self.output_attentions:
            return all_attentions, hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
667
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
668

669

thomwolf's avatar
thomwolf committed
670
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
671
672
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

673
674
675
676
677
678
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
679
680
681
682
683
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
684
         config.vocab_size + config.n_special - 1]                  ______________________
685

686
687
688
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
689
690
691
692
693
694

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
695
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
696
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
697
            with the position indices (selected in the range [0, config.n_positions - 1[.
698
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
699
700
701
702
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
703
704
705
706
707
708
709
710
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
711
712
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
713
714
715
716
717
718
719
720
721
722
723
724

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
725

thomwolf's avatar
thomwolf committed
726
    def __init__(self, config, output_attentions=False):
727
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
728
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
729
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
730
731
        self.apply(self.init_weights)

732
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
733
734
735
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
736
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
737
        self.transformer.set_num_special_tokens(num_special_tokens)
738
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
739
740
741

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
742
743
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
744
745
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
746
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
747
748
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
749
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
750
            loss_fct = CrossEntropyLoss(ignore_index=-1)
751
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
752
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
753
            return loss
thomwolf's avatar
thomwolf committed
754
755
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
756
        return lm_logits
thomwolf's avatar
thomwolf committed
757

758

thomwolf's avatar
thomwolf committed
759
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
760
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
761

762
763
764
765
766
767
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
768
769
770
771
772
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
773
         config.vocab_size + config.n_special - 1]                  ______________________
774

775
776
777
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
778
779
780
781
782

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
thomwolf's avatar
thomwolf committed
783
784
785
786
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
787
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
788
            with the position indices (selected in the range [0, config.n_positions - 1[.
789
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
790
791
792
793
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
794
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
795
796
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
797
798
799
800
801
802
803
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
804
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
805
806
807
808
809
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
810
811
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
812
813
814
815

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
thomwolf's avatar
thomwolf committed
816
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
817
818
    ```
    """
819

thomwolf's avatar
thomwolf committed
820
    def __init__(self, config, output_attentions=False):
821
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
822
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions)
823
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
824
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
825
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
826

827
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
828
829
830
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
831
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
832
        self.transformer.set_num_special_tokens(num_special_tokens)
833
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
834

thomwolf's avatar
thomwolf committed
835
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
836
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
thomwolf's avatar
thomwolf committed
837
838
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
839
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
840
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
841
842
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
843
844
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
845
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
846
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
847
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
848
            loss_fct = CrossEntropyLoss()
849
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
850
851
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
852
853
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
854
        return lm_logits, mc_logits