modeling_openai.py 36.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

thomwolf's avatar
thomwolf committed
18
import os
thomwolf's avatar
thomwolf committed
19
20
21
import copy
import json
import math
thomwolf's avatar
thomwolf committed
22
23
24
25
import logging
import tarfile
import tempfile
import shutil
thomwolf's avatar
thomwolf committed
26
27
28
29
import collections

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
33
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
34
from .file_utils import cached_path
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
37
logger = logging.getLogger(__name__)

38
39
40
41
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt.tar.gz"}
CONFIG_NAME = "openai_gpt_config.json"
WEIGHTS_NAME = "pytorch_model.bin"

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

    init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    del init_params[1]
    init_params = [arr.squeeze() for arr in init_params]

    try:
        assert model.embed.weight.shape == init_params[0].shape
    except AssertionError as e:
        e.args += (model.embed.weight.shape, init_params[0].shape)
        raise

    model.embed.weight.data = torch.from_numpy(init_params[0])
    names.pop(0)
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
103
104
105
106
107
108
109
110
111

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


112
113
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
114

thomwolf's avatar
thomwolf committed
115
116
117
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        initializer_range=0.02,
    ):
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
            n_ctx: Number of positional embeddings.
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        if isinstance(vocab_size_or_config_json_file, str):
154
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
            self.initializer_range = initializer_range
        else:
171
172
173
174
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    @property
    def total_num_embeddings(self):
        return self.vocab_size + self.n_special + self.n_ctx

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
191
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

207

thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
216
217
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
224
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
232
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
233
234
235
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
236
        assert n_state % config.n_head == 0
237
        self.register_buffer("b", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
238
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
239
240
241
242
        self.split_size = n_state
        self.scale = scale
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
243
244
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
245
246
247
248
249

    def _attn(self, q, k, v):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
250
251
        # w = w * self.b + -1e9 * (1 - self.b)  # TF implem method: mask_attn_weights
        # XD: self.b may be larger than w, so we need to crop it
252
        b = self.b[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
253
254
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
        a = self._attn(query, key, value)
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        return a


class MLP(nn.Module):
286
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
287
        super(MLP, self).__init__()
288
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
289
290
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
291
292
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
293
294
295
296
297
298
299
300

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
301
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
302
        super(Block, self).__init__()
303
304
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
thomwolf's avatar
thomwolf committed
305
        self.ln_1 = LayerNorm(nx)
306
        self.mlp = MLP(4 * nx, config)
thomwolf's avatar
thomwolf committed
307
308
309
310
311
312
313
314
315
316
        self.ln_2 = LayerNorm(nx)

    def forward(self, x):
        a = self.attn(x)
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
        return h


thomwolf's avatar
thomwolf committed
317
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
318
319
    """ Language Model Head for the transformer """

320
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
321
        super(OpenAIGPTLMHead, self).__init__()
322
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
323
324
325
326
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
thomwolf's avatar
thomwolf committed
327
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
328
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
329

thomwolf's avatar
thomwolf committed
330
    def forward(self, hidden_state):
thomwolf's avatar
thomwolf committed
331
        # Truncated Language modeling logits (we remove the last token)
thomwolf's avatar
thomwolf committed
332
333
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
thomwolf's avatar
thomwolf committed
334
335
336
        return lm_logits


thomwolf's avatar
thomwolf committed
337
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
338
339
    """ Classifier Head for the transformer """

340
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
341
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
342
        self.n_embd = config.n_embd
thomwolf's avatar
thomwolf committed
343
        # self.multiple_choice_token = multiple_choice_token
344
345
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
346

347
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
348
349
        nn.init.normal_(self.linear.bias, 0)

350
    def forward(self, hidden_states, mc_token_mask):
thomwolf's avatar
thomwolf committed
351
        # Classification logits
thomwolf's avatar
thomwolf committed
352
        # hidden_states = hidden_states.view(-1, self.n_embd)
353
354
355
        # mc_token_mask = mc_token_mask.view(-1, 1).expand_as(hidden_states)
        mc_token_mask = mc_token_mask.float()
        multiple_choice_h = hidden_states * mc_token_mask.unsqueeze(-1)
thomwolf's avatar
thomwolf committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
374

thomwolf's avatar
thomwolf committed
375
376
377
378
379
380
381
382
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
383
384
                )
            )
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
399

thomwolf's avatar
thomwolf committed
400
401
402
403
    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
404
405
406
    def from_pretrained(
        cls, pretrained_model_name, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
    ):
thomwolf's avatar
thomwolf committed
407
408
409
410
411
412
413
414
415
416
417
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
418
419
420
421
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
439
440
441
                    pretrained_model_name, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file
                )
            )
thomwolf's avatar
thomwolf committed
442
443
444
445
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
446
            logger.info("loading archive file {} from cache at {}".format(archive_file, resolved_archive_file))
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
453
454
            logger.info("extracting archive file {} to temp dir {}".format(resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, "r:gz") as archive:
thomwolf's avatar
thomwolf committed
455
456
457
458
459
460
461
462
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = OpenAIGPTConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
463
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
464
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
465
466
467
468
469
470
471
            state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None)
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
            return load_tf_weights_in_openai_gpt(model, serialization_dir)
thomwolf's avatar
thomwolf committed
472
473
474
475
476

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
477
478
479
480
            if "gamma" in key:
                new_key = key.replace("gamma", "weight")
            if "beta" in key:
                new_key = key.replace("beta", "bias")
thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
488
489
490
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
491
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
492
493
494
495
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

496
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
497
498
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
499
500
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
501
502
            for name, child in module._modules.items():
                if child is not None:
503
504
                    load(child, prefix + name + ".")

thomwolf's avatar
update  
thomwolf committed
505
506
507
508
        if hasattr(model, "transformer") and all(not s.startwith('transformer.') for s in state_dict.keys()):
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
509
        if len(missing_keys) > 0:
510
511
512
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
513
        if len(unexpected_keys) > 0:
514
515
516
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
517
        if len(error_msgs) > 0:
518
519
520
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
thomwolf's avatar
thomwolf committed
521
        # Add additional embeddings for special tokens if needed
522
        if num_special_tokens is not None and num_special_tokens != config.n_special:
thomwolf's avatar
thomwolf committed
523
524
            model.set_num_special_tokens(num_special_tokens)
        return model
thomwolf's avatar
thomwolf committed
525
526


thomwolf's avatar
thomwolf committed
527
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

    The main implementation difference between BERT and the OpenAI is the use, in OpenAI GPT, of a single embedding matrix
    to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use the associate indices to index the embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
578

579
580
581
582
583
584
585
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
        total_embeddings_size = config.vocab_size + config.n_special + config.n_ctx
        self.embed = nn.Embedding(total_embeddings_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
586

thomwolf's avatar
thomwolf committed
587
588
589
590
        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
thomwolf's avatar
thomwolf committed
591
        " Update input embeddings with new embedding matrice "
thomwolf's avatar
thomwolf committed
592
593
594
595
596
597
598
599
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
        old_embed = self.embed
        self.embed = nn.Embedding(self.config.total_num_embeddings, self.config.n_embd)
        # Initialize all new embeddings (in particular the special tokens)
        self.init_weights(self.embed)
        # Copy word and positional embeddings from the previous weights
600
601
        self.embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
        self.embed.weight.data[-self.config.n_ctx :, :] = old_embed.weight.data[-self.config.n_ctx :, :]
thomwolf's avatar
thomwolf committed
602

thomwolf's avatar
thomwolf committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
            start = self.config.vocab_size + self.config.n_special
            end = start + input_ids.size(-1)
            position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.embed(input_ids)
        position_embeds = self.embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.embed(token_type_ids)
        else:
            token_type_embeds = 0
thomwolf's avatar
thomwolf committed
621
        # Add the position information to the input embeddings
thomwolf's avatar
thomwolf committed
622
623
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
624
        for block in self.h:
thomwolf's avatar
thomwolf committed
625
626
            hidden_states = block(hidden_states)
        return hidden_states.view(*input_shape, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
627

628

thomwolf's avatar
thomwolf committed
629
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_num_embeddings]
                (or more generally [d_1, ..., d_n, total_num_embeddings] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
687

688
689
690
691
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
thomwolf's avatar
thomwolf committed
692
693
694
695
696
697
698
699
700
701
702
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
703
704
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
705
706
            return loss
        return lm_logits
thomwolf's avatar
thomwolf committed
707

708

thomwolf's avatar
thomwolf committed
709
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word BPE token indices selected in the range [0, config.vocab_size[
740
        `mc_token_mask`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            with a value of 1 were the last hidden state is (usually the [CLS] token) and 0 otherwise.
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special,
            config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., total_num_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_num_embeddings]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_num_embeddings]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
765
    mc_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
766
767
768
769

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
770
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_mask)
771
772
    ```
    """
773

774
775
776
777
778
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = OpenAIGPTLMHead(self.transformer.embed.weight, config)
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
779
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
780

thomwolf's avatar
thomwolf committed
781
782
783
784
    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)
thomwolf's avatar
thomwolf committed
785

786
    def forward(self, input_ids, mc_token_mask, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
thomwolf's avatar
thomwolf committed
787
788
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
789
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_mask)
thomwolf's avatar
thomwolf committed
790
791
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
792
793
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
794
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
795
            loss_fct = CrossEntropyLoss()
796
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
797
798
        if losses:
            return losses
799
        return lm_logits, mc_logits