modeling_openai.py 42.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
22
import copy
import json
thomwolf's avatar
thomwolf committed
23
import logging
24
25
26
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
27
28
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
29
30
import sys
from io import open
thomwolf's avatar
thomwolf committed
31
32
33

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
34
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
35
36
from torch.nn.parameter import Parameter

37
from .file_utils import cached_path, CONFIG_NAME, WEIGHTS_NAME
38
from .modeling import BertLayerNorm as LayerNorm
39
from .modeling_gpt2 import prune_conv1d_layer
thomwolf's avatar
thomwolf committed
40

thomwolf's avatar
thomwolf committed
41
42
logger = logging.getLogger(__name__)

43
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
thomwolf's avatar
thomwolf committed
44
PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
45

46

47
48
49
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
50
51
    import re
    import numpy as np
52
53
54
55
56
57
58
59
    print("Loading weights...")
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
60
    # This was used when we had a single embedding matrix for positions and tokens
61
62
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
63
64
65
    init_params = [arr.squeeze() for arr in init_params]

    try:
66
67
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
68
    except AssertionError as e:
69
70
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
71
72
        raise

73
74
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
75
    names.pop(0)
76
77
    # Pop position and token embedding arrays
    init_params.pop(0)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
124

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


125
126
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
127

thomwolf's avatar
thomwolf committed
128
129
130
class OpenAIGPTConfig(object):
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
131
132
133
134
135

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
136
        n_positions=512,
137
138
139
140
141
142
143
144
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
145
        layer_norm_epsilon=1e-5,
146
        initializer_range=0.02,
147
        predict_special_tokens=True
148
    ):
thomwolf's avatar
thomwolf committed
149
150
151
152
153
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
154
155
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161
162
163
164
165
166
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
167
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
168
169
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
170
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
171
        """
thomwolf's avatar
thomwolf committed
172
173
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
174
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
175
176
177
178
179
180
181
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
182
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
183
184
185
186
187
188
189
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
190
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
191
            self.initializer_range = initializer_range
192
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
193
        else:
194
195
196
197
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
198
199

    @property
200
201
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
202
203
204
205
206
207
208
209
210
211
212
213

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
        config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `OpenAIGPTConfig` from a json file of parameters."""
214
        with open(json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

230
231
232
233
234
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

235

thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
242
243
class Conv1D(nn.Module):
    def __init__(self, nf, rf, nx):
        super(Conv1D, self).__init__()
        self.rf = rf
        self.nf = nf
        if rf == 1:  # faster 1x1 conv
            w = torch.empty(nx, nf)
            nn.init.normal_(w, std=0.02)
thomwolf's avatar
thomwolf committed
244
245
            self.weight = Parameter(w)
            self.bias = Parameter(torch.zeros(nf))
thomwolf's avatar
thomwolf committed
246
247
248
249
250
251
        else:  # was used to train LM
            raise NotImplementedError

    def forward(self, x):
        if self.rf == 1:
            size_out = x.size()[:-1] + (self.nf,)
thomwolf's avatar
thomwolf committed
252
            x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
thomwolf's avatar
thomwolf committed
253
254
255
256
257
258
259
            x = x.view(*size_out)
        else:
            raise NotImplementedError
        return x


class Attention(nn.Module):
260
    def __init__(self, nx, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
261
262
263
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
264
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
265
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
266
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
267
268
        self.split_size = n_state
        self.scale = scale
269

thomwolf's avatar
thomwolf committed
270
        self.output_attentions = output_attentions
271
272
273
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
274
275
        self.c_attn = Conv1D(n_state * 3, 1, nx)
        self.c_proj = Conv1D(n_state, 1, nx)
276
277
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def prune_heads(self, heads):
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
294
295
296
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
297
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
298
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
299
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
300
301
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
302
303
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
304
305
306
307
308

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
309
310
        if self.output_attentions:
            return w, torch.matmul(w, v)
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        return torch.matmul(w, v)

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

326
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
327
328
329
330
331
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
332
333
334
335
336
337

        a = self._attn(query, key, value, head_mask)
        if self.keep_multihead_output:
            self.multihead_output = a
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
338
339
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
340
341
342
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
343
344
        if self.output_attentions:
            return attentions, a
thomwolf's avatar
thomwolf committed
345
346
347
348
        return a


class MLP(nn.Module):
349
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
350
        super(MLP, self).__init__()
351
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
352
353
        self.c_fc = Conv1D(n_state, 1, nx)
        self.c_proj = Conv1D(nx, 1, n_state)
354
355
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
356
357
358
359
360
361
362
363

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
364
    def __init__(self, n_ctx, config, scale=False, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
365
        super(Block, self).__init__()
366
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
367
        self.output_attentions = output_attentions
368
        self.attn = Attention(nx, n_ctx, config, scale, output_attentions, keep_multihead_output)
369
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
370
        self.mlp = MLP(4 * nx, config)
371
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
372

373
374
    def forward(self, x, head_mask=None):
        a = self.attn(x, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
375
376
        if self.output_attentions:
            attentions, a = a
thomwolf's avatar
thomwolf committed
377
378
379
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
380
381
        if self.output_attentions:
            return attentions, h
thomwolf's avatar
thomwolf committed
382
383
384
        return h


thomwolf's avatar
thomwolf committed
385
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
386
387
    """ Language Model Head for the transformer """

388
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
389
        super(OpenAIGPTLMHead, self).__init__()
390
        self.n_embd = config.n_embd
391
392
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
thomwolf's avatar
thomwolf committed
393
394
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
395
396
        self.set_embeddings_weights(model_embeddings_weights)

397
398
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
399
        embed_shape = model_embeddings_weights.shape
400
        self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
401

thomwolf's avatar
thomwolf committed
402
403
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
404
405
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
406
407
408
        return lm_logits


thomwolf's avatar
thomwolf committed
409
class OpenAIGPTMultipleChoiceHead(nn.Module):
thomwolf's avatar
thomwolf committed
410
411
    """ Classifier Head for the transformer """

412
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
413
        super(OpenAIGPTMultipleChoiceHead, self).__init__()
414
415
416
        self.n_embd = config.n_embd
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)
thomwolf's avatar
thomwolf committed
417

418
        nn.init.normal_(self.linear.weight, std=0.02)
thomwolf's avatar
thomwolf committed
419
420
        nn.init.normal_(self.linear.bias, 0)

thomwolf's avatar
thomwolf committed
421
    def forward(self, hidden_states, mc_token_ids):
thomwolf's avatar
thomwolf committed
422
        # Classification logits
thomwolf's avatar
thomwolf committed
423
        # hidden_state (bsz, num_choices, seq_length, hidden_size)
thomwolf's avatar
thomwolf committed
424
        # mc_token_ids (bsz, num_choices)
thomwolf's avatar
thomwolf committed
425
        mc_token_ids = mc_token_ids.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, -1, hidden_states.size(-1))
thomwolf's avatar
thomwolf committed
426
427
428
        # (bsz, num_choices, 1, hidden_size)
        multiple_choice_h = hidden_states.gather(2, mc_token_ids).squeeze(2)
        # (bsz, num_choices, hidden_size)
Philipp Glock's avatar
Philipp Glock committed
429
        multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
thomwolf's avatar
thomwolf committed
430
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
thomwolf's avatar
thomwolf committed
431
        # (bsz, num_choices)
thomwolf's avatar
thomwolf committed
432
433
434
435
436
437
438
        return multiple_choice_logits


class OpenAIGPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
439

thomwolf's avatar
thomwolf committed
440
441
442
443
444
445
446
447
    def __init__(self, config, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__()
        if not isinstance(config, OpenAIGPTConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
448
449
                )
            )
thomwolf's avatar
thomwolf committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        self.config = config

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
464

thomwolf's avatar
thomwolf committed
465
    @classmethod
466
    def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
467
468
469
470
471
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
472
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
473
474
475
476
477
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `openai-gpt`
                - a path or url to a pretrained model archive containing:
                    . `openai_gpt_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
478
                - a path or url to a pretrained model archive containing:
479
                    . `openai-gpt-config.json` a configuration file for the model
480
481
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
482
483
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
484
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
485
        """
486
487
488
489
490
491
492
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
493
494
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
495
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
496
        else:
thomwolf's avatar
thomwolf committed
497
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
498
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
thomwolf's avatar
thomwolf committed
499
500
501
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
502
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
503
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
504
505
506
507
508
509
510
511
512
513
514
515
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} and {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), pretrained_model_name_or_path,
                        archive_file, config_file
                    )
516
                )
thomwolf's avatar
thomwolf committed
517
            return None
518
519
520
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
thomwolf's avatar
thomwolf committed
521
        else:
522
523
524
525
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
thomwolf's avatar
thomwolf committed
526
        # Load config
527
        config = OpenAIGPTConfig.from_json_file(resolved_config_file)
thomwolf's avatar
thomwolf committed
528
529
530
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
531
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
532
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
533
534
        if from_tf:
            # Directly load from a TensorFlow checkpoint (stored as NumPy array)
535
            return load_tf_weights_in_openai_gpt(model, resolved_archive_file)
thomwolf's avatar
thomwolf committed
536
537
538
539
540

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
thomwolf's avatar
thomwolf committed
541
542
543
544
545
546
            if key.endswith(".g"):
                new_key = key[:-2] + ".weight"
            elif key.endswith(".b"):
                new_key = key[:-2] + ".bias"
            elif key.endswith(".w"):
                new_key = key[:-2] + ".weight"
thomwolf's avatar
thomwolf committed
547
548
549
550
551
552
553
554
555
556
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
557
        metadata = getattr(state_dict, "_metadata", None)
thomwolf's avatar
thomwolf committed
558
559
560
561
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

562
        def load(module, prefix=""):
thomwolf's avatar
thomwolf committed
563
564
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
565
566
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
            )
thomwolf's avatar
thomwolf committed
567
568
            for name, child in module._modules.items():
                if child is not None:
569
570
                    load(child, prefix + name + ".")

thomwolf's avatar
thomwolf committed
571
572
        start_model = model
        if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
thomwolf's avatar
update  
thomwolf committed
573
574
575
            start_model = model.transformer
        load(start_model, prefix="")

thomwolf's avatar
thomwolf committed
576
        if len(missing_keys) > 0:
577
578
579
            logger.info(
                "Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
            )
thomwolf's avatar
thomwolf committed
580
        if len(unexpected_keys) > 0:
581
582
583
            logger.info(
                "Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
            )
thomwolf's avatar
thomwolf committed
584
        if len(error_msgs) > 0:
585
586
587
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
            )
588

thomwolf's avatar
thomwolf committed
589
        # Add additional embeddings for special tokens if needed
590
591
        # This step also make sure we are still sharing the output and input embeddings after loading weights
        model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
thomwolf's avatar
thomwolf committed
592
        return model
thomwolf's avatar
thomwolf committed
593
594


thomwolf's avatar
thomwolf committed
595
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
596
597
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

598
599
600
601
602
603
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
604
605
606
607
608
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
609
         config.vocab_size + config.n_special - 1]                  ______________________
610

611
612
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
613
614
615
616
617
618
619
    You should use the associate indices to index the embeddings.

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
620
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
621
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
622
            with the position indices (selected in the range [0, config.n_positions - 1[.
623
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
624
625
626
627
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
645

646
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
647
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
648
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
649
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
650
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
651
        self.drop = nn.Dropout(config.embd_pdrop)
652
653
        block = Block(config.n_ctx, config, scale=True, output_attentions=output_attentions,
                                                        keep_multihead_output=keep_multihead_output)
654
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
655

thomwolf's avatar
thomwolf committed
656
657
658
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
659
660
661
        " Update input embeddings with new embedding matrice if needed "
        if self.config.n_special == num_special_tokens:
            return
thomwolf's avatar
thomwolf committed
662
663
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
664
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
665
        old_embed = self.tokens_embed
666
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
667
        self.tokens_embed.to(old_embed.weight.device)
668
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
669
670
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
671

672
673
674
675
676
677
678
679
680
681
682
683
684
685
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [h.attn.multihead_output for h in self.h]

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
686
        if position_ids is None:
687
688
689
690
691
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
692
693
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

694
695
696
697
698
699
700
701
702
703
704
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we mask the head
        # attention_probs has shape bsz x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each instance in batch
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
            head_mask = (1.0 - head_mask)

thomwolf's avatar
thomwolf committed
705
706
707
708
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

709
710
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
711
712
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
713
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
714
715
716
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
717
718
        hidden_states = self.drop(hidden_states)

thomwolf's avatar
thomwolf committed
719
        all_attentions = []
thomwolf's avatar
thomwolf committed
720
        for block in self.h:
721
            outputs = block(hidden_states, head_mask)
thomwolf's avatar
thomwolf committed
722
            if self.output_attentions:
723
                attentions, hidden_states = outputs
thomwolf's avatar
thomwolf committed
724
725
                all_attentions.append(attentions)
            else:
726
                hidden_states = outputs
thomwolf's avatar
thomwolf committed
727
        output_shape = input_shape + (hidden_states.size(-1),)
thomwolf's avatar
thomwolf committed
728
729
        if self.output_attentions:
            return all_attentions, hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
730
        return hidden_states.view(*output_shape)
thomwolf's avatar
thomwolf committed
731

732

thomwolf's avatar
thomwolf committed
733
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
734
735
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

736
737
738
739
740
741
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
742
743
744
745
746
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
747
         config.vocab_size + config.n_special - 1]                  ______________________
748

749
750
751
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
752
753
754
755
756
757

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
758
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
759
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
760
            with the position indices (selected in the range [0, config.n_positions - 1[.
761
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
762
763
764
765
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
766
767
768
769
770
771
772
773
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
774
775
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
776
777
778
779
780
781
782
783
784
785
786
787

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
788

789
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
790
        super(OpenAIGPTLMHeadModel, self).__init__(config)
791
792
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
793
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
794
795
        self.apply(self.init_weights)

796
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
797
798
799
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
800
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
801
        self.transformer.set_num_special_tokens(num_special_tokens)
802
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
803

804
805
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
806
807
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
808
809
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
810
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
811
812
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
813
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
814
            loss_fct = CrossEntropyLoss(ignore_index=-1)
815
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
816
                            shift_labels.view(-1))
thomwolf's avatar
thomwolf committed
817
            return loss
thomwolf's avatar
thomwolf committed
818
819
        if self.transformer.output_attentions:
            return all_attentions, lm_logits
thomwolf's avatar
thomwolf committed
820
        return lm_logits
thomwolf's avatar
thomwolf committed
821

822

thomwolf's avatar
thomwolf committed
823
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
824
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
825

826
827
828
829
830
831
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
832
833
834
835
836
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
837
         config.vocab_size + config.n_special - 1]                  ______________________
838

839
840
841
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
842
843
844
845
846

    Params:
        config: a OpenAIGPTConfig class instance with the configuration to build a new model

    Inputs:
thomwolf's avatar
thomwolf committed
847
848
849
850
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
851
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
852
            with the position indices (selected in the range [0, config.n_positions - 1[.
853
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
854
855
856
857
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
858
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
859
860
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
861
862
863
864
865
866
867
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
868
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
869
870
871
872
873
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
874
875
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
876
877
878

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
879
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
880
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
881
882
    ```
    """
883

884
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
885
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
886
887
        self.transformer = OpenAIGPTModel(config, output_attentions=output_attentions,
                                             keep_multihead_output=keep_multihead_output)
888
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
889
        self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
thomwolf's avatar
thomwolf committed
890
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
891

892
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
893
894
895
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
896
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
897
        self.transformer.set_num_special_tokens(num_special_tokens)
898
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
899

900
901
902
    def forward(self, input_ids, mc_token_ids, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, head_mask=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
thomwolf's avatar
thomwolf committed
903
904
        if self.transformer.output_attentions:
            all_attentions, hidden_states = hidden_states
thomwolf's avatar
thomwolf committed
905
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
906
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids)
thomwolf's avatar
thomwolf committed
907
908
        losses = []
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
909
910
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
911
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
912
            losses.append(loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)))
913
        if mc_labels is not None:
thomwolf's avatar
thomwolf committed
914
            loss_fct = CrossEntropyLoss()
915
            losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
thomwolf's avatar
thomwolf committed
916
917
        if losses:
            return losses
thomwolf's avatar
thomwolf committed
918
919
        if self.transformer.output_attentions:
            return all_attentions, lm_logits, mc_logits
920
        return lm_logits, mc_logits