nodes.py 43.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16


comfyanonymous's avatar
comfyanonymous committed
17
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
19
import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
20
21
import comfy.utils

22
import comfy.clip_vision
23

24
import comfy.model_management
25
import importlib
comfyanonymous's avatar
comfyanonymous committed
26

27
import folder_paths
28
29

def before_node_execution():
30
    comfy.model_management.throw_exception_if_processing_interrupted()
31

32
def interrupt_processing(value=True):
33
    comfy.model_management.interrupt_current_processing(value)
34

35
36
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
37
38
39
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
40
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
41
42
43
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

44
45
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
46
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
51
52
53
54
55
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

56
57
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
58
59
60
61
62
63
64
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
65
66
67
68
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

74
75
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
76
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
77
78
79
80
81
82
83
84
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
85
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
86
87
88
89
90
91
92
93
94
95
96

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

97
98
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
99
    def decode(self, vae, samples):
100
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
117
118
119
120
121
122
123
124
125
126
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

127
128
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
129
    def encode(self, vae, pixels):
130
131
132
133
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
134
135
136
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
137

comfyanonymous's avatar
comfyanonymous committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
174
175
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

176
        pixels = pixels.clone()
177
178
179
180
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

181
        #grow mask by a few pixels to keep things seamless in latent space
182
        kernel_tensor = torch.ones((1, 1, 6, 6))
183
184
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
185
186
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
187
            pixels[:,:,:,i] *= m
188
189
190
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

191
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
196
197
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
198
199
200
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

201
    CATEGORY = "advanced/loaders"
202

comfyanonymous's avatar
comfyanonymous committed
203
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
204
205
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
206
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
207

208
209
210
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
211
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
212
213
214
215
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

216
    CATEGORY = "loaders"
217

218
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
219
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
220
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
221
222
        return out

sALTaccount's avatar
sALTaccount committed
223
224
225
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
226
        paths = []
sALTaccount's avatar
sALTaccount committed
227
        for search_path in folder_paths.get_folder_paths("diffusers"):
228
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
229
                paths += next(os.walk(search_path))[1]
230
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
231
232
233
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

234
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
235
236

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
237
238
239
240
241
242
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
243

244
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
245
246


247
248
249
250
251
252
253
254
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

255
    CATEGORY = "loaders"
256
257
258
259
260
261

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

278
279
280
281
282
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
283
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
284
285
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
286
287
288
289
290
291
292
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
293
        lora_path = folder_paths.get_full_path("loras", lora_name)
294
295
296
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
313
314
315
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
316
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
317
318
319
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

320
321
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
322
323
    #TODO: scale factor?
    def load_vae(self, vae_name):
324
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
325
326
327
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
328
329
330
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
331
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
332
333
334
335
336
337
338

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
339
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
340
341
342
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

343
344
345
346
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
347
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
348
349
350
351
352
353
354

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
355
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
356
357
358
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
359
360
361
362

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
363
364
365
366
367
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

373
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
374
375
376
377
378
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
379
380
381
382
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
383
384
385
            c.append(n)
        return (c, )

386
387
388
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
389
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
390
391
392
393
394
395
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

396
    def load_clip(self, clip_name):
397
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
398
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
399
400
        return (clip,)

401
402
403
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
404
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
405
406
407
408
409
410
411
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
412
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
413
        clip_vision = comfy.clip_vision.load(clip_path)
414
415
416
417
418
419
420
421
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
422
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
423
424
    FUNCTION = "encode"

425
    CATEGORY = "conditioning"
426
427
428
429
430
431
432
433

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
434
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
435
436
437
438
439
440
441

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
442
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
443
444
445
446
447
448
449
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
450
451
452
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
453
454
455
456
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
457
    CATEGORY = "conditioning/style_model"
458

459
460
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
461
        c = []
462
463
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
464
465
466
            c.append(n)
        return (c, )

467
468
469
470
471
472
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
473
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
474
475
476
477
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

478
    CATEGORY = "conditioning"
479

480
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
481
482
483
        c = []
        for t in conditioning:
            o = t[1].copy()
484
            x = (clip_vision_output, strength, noise_augmentation)
485
486
487
488
489
490
491
492
493
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
500
501
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
502
503
504
505
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

506
507
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
508
509
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
510
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
511

comfyanonymous's avatar
comfyanonymous committed
512

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, batch_index):
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
        s["samples"] = s_in[batch_index:batch_index + 1].clone()
        s["batch_index"] = batch_index
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
531

comfyanonymous's avatar
comfyanonymous committed
532
533
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
534
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
535
536
537
538

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
539
540
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
541
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
542
543
544
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

545
546
    CATEGORY = "latent"

547
    def upscale(self, samples, upscale_method, width, height, crop):
548
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
549
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
550
551
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
552
553
554
555
556
557
558
559
560
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
561
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
562
563

    def rotate(self, samples, rotation):
564
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
565
566
567
568
569
570
571
572
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

573
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
574
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
575
576
577
578
579
580
581
582
583
584

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
585
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
586
587

    def flip(self, samples, flip_method):
588
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
589
        if flip_method.startswith("x"):
590
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
591
        elif flip_method.startswith("y"):
592
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
593
594

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
595
596
597
598

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
599
600
601
602
603
604
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
610
611
612
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
613
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
637

comfyanonymous's avatar
comfyanonymous committed
638
639
640
641
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
642
643
644
645
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
646
647
648
649
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
650
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
651
652

    def crop(self, samples, width, height, x, y):
653
654
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
678
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
679
680
        return (s,)

681
682
683
684
685
686
687
688
689
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

690
    CATEGORY = "latent/inpaint"
691
692
693
694
695
696
697

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


698
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
699
700
    latent_image = latent["samples"]
    noise_mask = None
701
    device = comfy.model_management.get_torch_device()
702

comfyanonymous's avatar
comfyanonymous committed
703
704
705
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
706
707
708
709
710
711
712
        batch_index = 0
        if "batch_index" in latent:
            batch_index = latent["batch_index"]

        generator = torch.manual_seed(seed)
        for i in range(batch_index + 1):
            noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
comfyanonymous's avatar
comfyanonymous committed
713

714
715
716
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
717
        noise_mask = noise_mask.round()
718
719
720
721
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

722
    real_model = None
723
    comfy.model_management.load_model_gpu(model)
724
725
    real_model = model.model

726
727
728
729
730
731
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
732
    control_nets = []
733
734
735
736
737
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
738
739
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
740
741
742
743
744
745
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
746
747
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
748
749
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
750
751
752
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
753
    comfy.model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
754

755
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
756
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
757
758
759
760
    else:
        #other samplers
        pass

761
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
762
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
763
764
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
765

766
767
768
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
769

comfyanonymous's avatar
comfyanonymous committed
770
771
772
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
773
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

789
790
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
791
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
792
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
793

comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
817

comfyanonymous's avatar
comfyanonymous committed
818
819
820
821
822
823
824
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
825
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
826
827
828

class SaveImage:
    def __init__(self):
829
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
830
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
831
832
833
834

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
835
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
836
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
837
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
838
839
840
841
842
843
844
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

845
846
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
847
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
848
        def map_filename(filename):
849
            prefix_len = len(os.path.basename(filename_prefix))
850
851
852
853
854
855
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
856

857
858
859
860
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
861

862
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
863

m957ymj75urz's avatar
m957ymj75urz committed
864
865
866
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
867
        full_output_folder = os.path.join(self.output_dir, subfolder)
868

869
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
870
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
871
872
            return {}

873
        try:
874
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
875
876
        except ValueError:
            counter = 1
877
        except FileNotFoundError:
878
            os.makedirs(full_output_folder, exist_ok=True)
879
            counter = 1
pythongosssss's avatar
pythongosssss committed
880

m957ymj75urz's avatar
m957ymj75urz committed
881
        results = list()
comfyanonymous's avatar
comfyanonymous committed
882
883
        for image in images:
            i = 255. * image.cpu().numpy()
884
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
885
886
887
888
889
890
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
891

892
            file = f"{filename}_{counter:05}_.png"
893
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
894
895
896
897
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
898
            })
899
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
900

m957ymj75urz's avatar
m957ymj75urz committed
901
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
902

pythongosssss's avatar
pythongosssss committed
903
904
class PreviewImage(SaveImage):
    def __init__(self):
905
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
906
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
907
908
909

    @classmethod
    def INPUT_TYPES(s):
910
        return {"required":
pythongosssss's avatar
pythongosssss committed
911
912
913
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
914

915
916
917
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
918
        input_dir = folder_paths.get_input_directory()
919
        return {"required":
920
                    {"image": (sorted(os.listdir(input_dir)), )},
921
                }
922
923

    CATEGORY = "image"
924

925
    RETURN_TYPES = ("IMAGE", "MASK")
926
927
    FUNCTION = "load_image"
    def load_image(self, image):
928
929
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
930
931
        i = Image.open(image_path)
        image = i.convert("RGB")
932
        image = np.array(image).astype(np.float32) / 255.0
933
        image = torch.from_numpy(image)[None,]
934
935
936
937
938
939
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
940

941
942
    @classmethod
    def IS_CHANGED(s, image):
943
944
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
945
946
947
948
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
949

950
951
952
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
953
        input_dir = folder_paths.get_input_directory()
954
        return {"required":
955
                    {"image": (sorted(os.listdir(input_dir)), ),
956
957
958
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

959
    CATEGORY = "mask"
960
961
962
963

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
964
965
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
966
        i = Image.open(image_path)
967
968
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
969
970
971
972
973
974
975
976
977
978
979
980
981
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
982
983
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
984
985
986
987
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
988

comfyanonymous's avatar
comfyanonymous committed
989
990
991
992
993
994
995
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
996
997
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
998
999
1000
1001
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1002
    CATEGORY = "image/upscaling"
1003

comfyanonymous's avatar
comfyanonymous committed
1004
1005
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1006
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1007
1008
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1026
1027
1028
1029
1030
1031
1032
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1033
1034
1035
1036
1037
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1038
1039
1040
1041
1042
1043
1044
1045
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1046
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1059

1060
1061
1062
1063
1064
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1065
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1085

Guo Y.K's avatar
Guo Y.K committed
1086
1087
1088
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1089
1090
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1091
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1092
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1093
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1094
1095
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1096
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1097
1098
1099
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
1100
    "LatentFromBatch": LatentFromBatch,
comfyanonymous's avatar
comfyanonymous committed
1101
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1102
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1103
    "LoadImage": LoadImage,
1104
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1105
    "ImageScale": ImageScale,
1106
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1107
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1108
1109
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1110
    "KSamplerAdvanced": KSamplerAdvanced,
1111
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1112
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1113
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1114
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1115
    "LatentCrop": LatentCrop,
1116
    "LoraLoader": LoraLoader,
1117
    "CLIPLoader": CLIPLoader,
1118
    "CLIPVisionEncode": CLIPVisionEncode,
1119
    "StyleModelApply": StyleModelApply,
1120
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1121
1122
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1123
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1124
1125
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1126
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1127
    "VAEEncodeTiled": VAEEncodeTiled,
1128
    "TomePatchModel": TomePatchModel,
1129
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1130
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1131
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1132
1133
}

City's avatar
City committed
1134
1135
1136
1137
1138
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1139
1140
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
    "ConditioningSetArea": "Conditioning (Set Area)",
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1197
1198
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1199
1200
1201
1202
1203
1204
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1205
def load_custom_nodes():
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
    node_paths = folder_paths.get_folder_paths("custom_nodes")
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
            load_custom_node(module_path)
1216

1217
1218
def init_custom_nodes():
    load_custom_nodes()
1219
1220
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1221
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))