nodes.py 42.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

sALTaccount's avatar
sALTaccount committed
13

comfyanonymous's avatar
comfyanonymous committed
14
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
15
16


comfyanonymous's avatar
comfyanonymous committed
17
import comfy.diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
18
19
import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
20
21
import comfy.utils

22
import comfy.clip_vision
23

24
import model_management
25
import importlib
comfyanonymous's avatar
comfyanonymous committed
26

27
import folder_paths
28
29
30
31

def before_node_execution():
    model_management.throw_exception_if_processing_interrupted()

32
33
def interrupt_processing(value=True):
    model_management.interrupt_current_processing(value)
34

35
36
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
37
38
39
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
40
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
41
42
43
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

44
45
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
46
    def encode(self, clip, text):
BlenderNeko's avatar
BlenderNeko committed
47
48
        tokens = clip.tokenize(text)
        return ([[clip.encode(tokens), {}]], )
comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
53
54
55
56

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

57
58
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
65
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
66
67
68
69
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

75
76
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
77
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
78
79
80
81
82
83
84
85
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
86
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
87
88
89
90
91
92
93
94
95
96
97

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

98
99
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
100
    def decode(self, vae, samples):
101
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class VAEDecodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
118
119
120
121
122
123
124
125
126
127
class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

128
129
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
130
    def encode(self, vae, pixels):
131
132
133
134
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
135
136
137
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
138

comfyanonymous's avatar
comfyanonymous committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

class VAEEncodeTiled:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
        t = vae.encode_tiled(pixels[:,:,:,:3])

        return ({"samples":t}, )
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
175
176
        mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]

177
        pixels = pixels.clone()
178
179
180
181
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

182
        #grow mask by a few pixels to keep things seamless in latent space
183
        kernel_tensor = torch.ones((1, 1, 6, 6))
184
185
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
        m = (1.0 - mask.round())
186
187
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
188
            pixels[:,:,:,i] *= m
189
190
191
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

192
        return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
193
194
195
196

class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
197
198
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
199
200
201
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

202
    CATEGORY = "advanced/loaders"
203

comfyanonymous's avatar
comfyanonymous committed
204
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
205
206
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
207
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
208

209
210
211
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
212
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
213
214
215
216
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

217
    CATEGORY = "loaders"
218

219
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
220
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
221
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
222
223
        return out

sALTaccount's avatar
sALTaccount committed
224
225
226
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
227
        paths = []
sALTaccount's avatar
sALTaccount committed
228
        for search_path in folder_paths.get_folder_paths("diffusers"):
229
            if os.path.exists(search_path):
sALTaccount's avatar
sALTaccount committed
230
                paths += next(os.walk(search_path))[1]
231
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
232
233
234
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

235
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
236
237

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
238
239
240
241
242
243
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
                paths = next(os.walk(search_path))[1]
                if model_path in paths:
                    model_path = os.path.join(search_path, model_path)
                    break
244

comfyanonymous's avatar
comfyanonymous committed
245
        return comfy.diffusers_convert.load_diffusers(model_path, fp16=model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
246
247


248
249
250
251
252
253
254
255
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

256
    CATEGORY = "loaders"
257
258
259
260
261
262

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

279
280
281
282
283
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
284
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
285
286
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
287
288
289
290
291
292
293
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
294
        lora_path = folder_paths.get_full_path("loras", lora_name)
295
296
297
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
314
315
316
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
317
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
318
319
320
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

321
322
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
323
324
    #TODO: scale factor?
    def load_vae(self, vae_name):
325
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
326
327
328
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
329
330
331
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
332
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
333
334
335
336
337
338
339

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
340
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
341
342
343
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

344
345
346
347
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
348
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
349
350
351
352
353
354
355

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
356
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
357
358
359
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
360
361
362
363

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
364
365
366
367
368
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
369
370
371
372
373
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

374
    def apply_controlnet(self, conditioning, control_net, image, strength):
comfyanonymous's avatar
comfyanonymous committed
375
376
377
378
379
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
380
381
382
383
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
384
385
386
            c.append(n)
        return (c, )

387
388
389
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
390
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
391
392
393
394
395
396
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

397
    def load_clip(self, clip_name):
398
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
399
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
400
401
        return (clip,)

402
403
404
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
405
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
406
407
408
409
410
411
412
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
413
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
414
        clip_vision = comfy.clip_vision.load(clip_path)
415
416
417
418
419
420
421
422
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
423
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
424
425
    FUNCTION = "encode"

426
    CATEGORY = "conditioning"
427
428
429
430
431
432
433
434

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
435
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
436
437
438
439
440
441
442

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
443
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
444
445
446
447
448
449
450
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
451
452
453
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
454
455
456
457
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
458
    CATEGORY = "conditioning/style_model"
459

460
461
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
462
        c = []
463
464
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
465
466
467
            c.append(n)
        return (c, )

468
469
470
471
472
473
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
474
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
475
476
477
478
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

479
    CATEGORY = "conditioning"
480

481
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
482
483
484
        c = []
        for t in conditioning:
            o = t[1].copy()
485
            x = (clip_vision_output, strength, noise_augmentation)
486
487
488
489
490
491
492
493
494
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )


comfyanonymous's avatar
comfyanonymous committed
495
496
497
498
499
500
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
501
502
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
comfyanonymous's avatar
comfyanonymous committed
503
504
505
506
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

507
508
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
509
510
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
511
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
512

comfyanonymous's avatar
comfyanonymous committed
513

comfyanonymous's avatar
comfyanonymous committed
514

comfyanonymous's avatar
comfyanonymous committed
515
516
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
517
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
522
523
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
524
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
525
526
527
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

528
529
    CATEGORY = "latent"

530
    def upscale(self, samples, upscale_method, width, height, crop):
531
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
532
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
533
534
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
535
536
537
538
539
540
541
542
543
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
544
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
545
546

    def rotate(self, samples, rotation):
547
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
548
549
550
551
552
553
554
555
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

556
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
557
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
558
559
560
561
562
563
564
565
566
567

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
568
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
569
570

    def flip(self, samples, flip_method):
571
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
572
        if flip_method.startswith("x"):
573
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
574
        elif flip_method.startswith("y"):
575
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
576
577

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
583

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
584
585
586
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
587
588
589
590
591
592
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

593
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
594
595
        x =  x // 8
        y = y // 8
596
        feather = feather // 8
597
598
599
600
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
601
602
603
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
604
605
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
606
607
608
609
610
611
612
613
614
615
616
617
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
618
619
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
620

comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
625
626
627
628
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
629
630
631
632
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
633
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
634
635

    def crop(self, samples, width, height, x, y):
636
637
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
661
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
662
663
        return (s,)

664
665
666
667
668
669
670
671
672
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

673
    CATEGORY = "latent/inpaint"
674
675
676
677
678
679
680

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


681
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
682
683
    latent_image = latent["samples"]
    noise_mask = None
684
    device = model_management.get_torch_device()
685

comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

691
692
693
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
694
        noise_mask = noise_mask.round()
695
696
697
698
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

699
    real_model = None
700
701
702
    model_management.load_model_gpu(model)
    real_model = model.model

703
704
705
706
707
708
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
709
    control_nets = []
710
711
712
713
714
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
715
716
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
717
718
719
720
721
722
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
723
724
        if 'control' in n[1]:
            control_nets += [n[1]['control']]
725
726
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
727
728
729
730
    control_net_models = []
    for x in control_nets:
        control_net_models += x.get_control_models()
    model_management.load_controlnet_gpu(control_net_models)
comfyanonymous's avatar
comfyanonymous committed
731

732
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
733
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
734
735
736
737
    else:
        #other samplers
        pass

738
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
739
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
740
741
    for c in control_nets:
        c.cleanup()
comfyanonymous's avatar
comfyanonymous committed
742

743
744
745
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
746

comfyanonymous's avatar
comfyanonymous committed
747
748
749
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
750
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

766
767
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
768
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
769
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
770

comfyanonymous's avatar
comfyanonymous committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
794

comfyanonymous's avatar
comfyanonymous committed
795
796
797
798
799
800
801
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
802
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
803
804
805

class SaveImage:
    def __init__(self):
806
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
807
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
808
809
810
811

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
812
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
813
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
814
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
815
816
817
818
819
820
821
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

822
823
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
824
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
825
        def map_filename(filename):
826
            prefix_len = len(os.path.basename(filename_prefix))
827
828
829
830
831
832
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
comfyanonymous's avatar
Style.  
comfyanonymous committed
833

834
835
836
837
        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input
comfyanonymous's avatar
Style.  
comfyanonymous committed
838

839
        filename_prefix = compute_vars(filename_prefix)
comfyanonymous's avatar
comfyanonymous committed
840

m957ymj75urz's avatar
m957ymj75urz committed
841
842
843
        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

comfyanonymous's avatar
comfyanonymous committed
844
        full_output_folder = os.path.join(self.output_dir, subfolder)
845

846
        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
847
            print("Saving image outside the output folder is not allowed.")
comfyanonymous's avatar
comfyanonymous committed
848
849
            return {}

850
        try:
851
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
852
853
        except ValueError:
            counter = 1
854
        except FileNotFoundError:
855
            os.makedirs(full_output_folder, exist_ok=True)
856
            counter = 1
pythongosssss's avatar
pythongosssss committed
857

m957ymj75urz's avatar
m957ymj75urz committed
858
        results = list()
comfyanonymous's avatar
comfyanonymous committed
859
860
        for image in images:
            i = 255. * image.cpu().numpy()
861
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
862
863
864
865
866
867
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
868

869
            file = f"{filename}_{counter:05}_.png"
870
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
871
872
873
874
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
875
            })
876
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
877

m957ymj75urz's avatar
m957ymj75urz committed
878
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
879

pythongosssss's avatar
pythongosssss committed
880
881
class PreviewImage(SaveImage):
    def __init__(self):
882
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
883
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
884
885
886

    @classmethod
    def INPUT_TYPES(s):
887
        return {"required":
pythongosssss's avatar
pythongosssss committed
888
889
890
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
891

892
893
894
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
895
        input_dir = folder_paths.get_input_directory()
896
        return {"required":
897
                    {"image": (sorted(os.listdir(input_dir)), )},
898
                }
899
900

    CATEGORY = "image"
901

902
    RETURN_TYPES = ("IMAGE", "MASK")
903
904
    FUNCTION = "load_image"
    def load_image(self, image):
905
906
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
907
908
        i = Image.open(image_path)
        image = i.convert("RGB")
909
        image = np.array(image).astype(np.float32) / 255.0
910
        image = torch.from_numpy(image)[None,]
911
912
913
914
915
916
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
917

918
919
    @classmethod
    def IS_CHANGED(s, image):
920
921
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
922
923
924
925
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
926

927
928
929
class LoadImageMask:
    @classmethod
    def INPUT_TYPES(s):
930
        input_dir = folder_paths.get_input_directory()
931
        return {"required":
932
                    {"image": (sorted(os.listdir(input_dir)), ),
933
934
935
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

936
    CATEGORY = "mask"
937
938
939
940

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
941
942
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
943
        i = Image.open(image_path)
944
945
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
946
947
948
949
950
951
952
953
954
955
956
957
958
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
959
960
        input_dir = folder_paths.get_input_directory()
        image_path = os.path.join(input_dir, image)
961
962
963
964
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
965

comfyanonymous's avatar
comfyanonymous committed
966
967
968
969
970
971
972
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
973
974
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
975
976
977
978
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

979
    CATEGORY = "image/upscaling"
980

comfyanonymous's avatar
comfyanonymous committed
981
982
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
983
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
984
985
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
986

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1003
1004
1005
1006
1007
1008
1009
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1010
1011
1012
1013
1014
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1015
1016
1017
1018
1019
1020
1021
1022
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1023
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1036

1037
1038
1039
1040
1041
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1042
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1062

Guo Y.K's avatar
Guo Y.K committed
1063
1064
1065
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1066
1067
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1068
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1069
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1070
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1071
1072
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1073
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1074
1075
1076
1077
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1078
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1079
    "LoadImage": LoadImage,
1080
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1081
    "ImageScale": ImageScale,
1082
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1083
    "ImagePadForOutpaint": ImagePadForOutpaint,
comfyanonymous's avatar
comfyanonymous committed
1084
1085
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
1086
    "KSamplerAdvanced": KSamplerAdvanced,
1087
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1088
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1089
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1090
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1091
    "LatentCrop": LatentCrop,
1092
    "LoraLoader": LoraLoader,
1093
    "CLIPLoader": CLIPLoader,
1094
    "CLIPVisionEncode": CLIPVisionEncode,
1095
    "StyleModelApply": StyleModelApply,
1096
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1097
1098
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1099
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1100
1101
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1102
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1103
    "VAEEncodeTiled": VAEEncodeTiled,
1104
    "TomePatchModel": TomePatchModel,
1105
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1106
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1107
    "DiffusersLoader": DiffusersLoader,
comfyanonymous's avatar
comfyanonymous committed
1108
1109
}

City's avatar
City committed
1110
1111
1112
1113
1114
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1115
1116
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
    "ConditioningSetArea": "Conditioning (Set Area)",
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
    "LatentComposite": "Latent Composite",
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1173
1174
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1175
1176
1177
1178
1179
1180
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)

Hacker 17082006's avatar
Hacker 17082006 committed
1181
def load_custom_nodes():
1182
    CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
1183
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
1184
    if "__pycache__" in possible_modules:
Hacker 17082006's avatar
.  
Hacker 17082006 committed
1185
        possible_modules.remove("__pycache__")
1186

Hacker 17082006's avatar
Hacker 17082006 committed
1187
    for possible_module in possible_modules:
1188
1189
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1190
        load_custom_node(module_path)
1191

1192
1193
def init_custom_nodes():
    load_custom_nodes()
1194
1195
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1196
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))