nodes.py 24 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

13
sys.path.insert(0, os.path.join(sys.path[0], "comfy"))
Hacker 17082006's avatar
Hacker 17082006 committed
14
sys.dont_write_bytecode = True #No __pycache__ plz
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18


import comfy.samplers
import comfy.sd
19
import model_management
20
import importlib
comfyanonymous's avatar
comfyanonymous committed
21
22

supported_ckpt_extensions = ['.ckpt']
23
supported_pt_extensions = ['.ckpt', '.pt', '.bin']
comfyanonymous's avatar
comfyanonymous committed
24
25
26
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
27
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
28
29
30
except:
    print("Could not import safetensors, safetensors support disabled.")

31
32
33
34
def recursive_search(directory):  
    result = []
    for root, subdir, file in os.walk(directory, followlinks=True):
        for filepath in file:
35
36
            #we os.path,join directory with a blank string to generate a path separator at the end.
            result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) 
37
38
    return result

comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
43
44
def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
45
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
46
47
48
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

49
50
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
51
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
52
53
54
55
56
57
58
59
60
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

61
62
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

79
80
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
81
82
83
84
85
86
87
88
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
        c = copy.deepcopy(conditioning)
        for t in c:
            t[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            t[1]['strength'] = strength
            t[1]['min_sigma'] = min_sigma
            t[1]['max_sigma'] = max_sigma
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
89
90
91
92
93
94
95
96
97
98
99

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

100
101
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
108
109
110
111
112
113
114
    def decode(self, vae, samples):
        return (vae.decode(samples), )

class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

115
116
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
117
    def encode(self, vae, pixels):
118
119
120
121
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
comfyanonymous's avatar
comfyanonymous committed
122
123
124
125
126
127
        return (vae.encode(pixels), )

class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")
128
    embedding_directory = os.path.join(models_dir, "embeddings")
comfyanonymous's avatar
comfyanonymous committed
129
130
131

    @classmethod
    def INPUT_TYPES(s):
132
133
        return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
134
135
136
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

137
138
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
139
140
141
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
142
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
143

144
145
146
147
148
149
150
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
151
                              "lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
152
153
154
155
156
157
158
159
160
161
162
163
164
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
165
166
167
168
169
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
170
        return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
171
172
173
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

174
175
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
176
177
178
179
180
181
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

182
183
184
185
186
class CLIPLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip")
    @classmethod
    def INPUT_TYPES(s):
187
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
188
189
190
191
192
193
194
195
196
197
198
199
200
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name, stop_at_clip_layer):
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

comfyanonymous's avatar
comfyanonymous committed
201
202
203
204
205
206
207
208
209
210
211
212
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

213
214
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
215
216
217
218
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        return (latent, )

comfyanonymous's avatar
comfyanonymous committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
        return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)

comfyanonymous's avatar
comfyanonymous committed
236
237
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
238
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
244
245
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
246
247
248
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

249
250
    CATEGORY = "latent"

251
    def upscale(self, samples, upscale_method, width, height, crop):
comfyanonymous's avatar
comfyanonymous committed
252
        s = common_upscale(samples, width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
253
254
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, rotation):
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

        s = torch.rot90(samples, k=rotate_by, dims=[3, 2])
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

    CATEGORY = "latent"

    def flip(self, samples, flip_method):
        if flip_method.startswith("x"):
            s = torch.flip(samples, dims=[2])
        elif flip_method.startswith("y"):
            s = torch.flip(samples, dims=[3])
        else:
            s = samples

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
298
299
300
301
302
303
304
305

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
306
                              "feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

313
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
314
315
        x =  x // 8
        y = y // 8
316
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
317
        s = samples_to.clone()
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            s_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(s_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
comfyanonymous's avatar
comfyanonymous committed
335
336
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

    CATEGORY = "latent"

    def crop(self, samples, width, height, x, y):
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
        s = samples[:,:,y:to_y, x:to_x]
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
378
379
380
381
382
383
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

384
    real_model = None
385
386
387
388
389
    if device != "cpu":
        model_management.load_model_gpu(model)
        real_model = model.model
    else:
        #TODO: cpu support
390
        real_model = model.patch_model()
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
        negative_copy += [[t] + n[1:]]

    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
418
419
420

    return (samples, )

comfyanonymous's avatar
comfyanonymous committed
421
422
423
424
425
426
class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
427
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

443
444
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
445
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
446
        return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
447

comfyanonymous's avatar
comfyanonymous committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
class KSamplerAdvanced:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
474

comfyanonymous's avatar
comfyanonymous committed
475
476
477
478
479
480
481
482
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
        return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
483
484
485
486
487
488
489
490

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
491
492
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
498
499
500
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

501
502
    CATEGORY = "image"

503
504
505
506
507
508
509
510
511
512
513
514
515
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
516
517
518
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1
comfyanonymous's avatar
comfyanonymous committed
519
520
521
522
523
524
525
526
527
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
528
            img.save(os.path.join(self.output_dir, f"{filename_prefix}_{counter:05}_.png"), pnginfo=metadata, optimize=True)
529
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
530

531
532
533
534
535
536
537
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), )},
                }
538
539

    CATEGORY = "image"
540
541
542
543
544
545
546
547
548
549

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
        image = Image.open(image_path).convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image[None])[None,]
        return image

550
551
552
553
554
555
556
557
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

comfyanonymous's avatar
comfyanonymous committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image"
572

comfyanonymous's avatar
comfyanonymous committed
573
574
575
576
577
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
        s = common_upscale(samples, width, height, upscale_method, crop)
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
583
584
585
586
587
588

NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
589
    "LoadImage": LoadImage,
comfyanonymous's avatar
comfyanonymous committed
590
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
591
592
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
593
    "KSamplerAdvanced": KSamplerAdvanced,
comfyanonymous's avatar
comfyanonymous committed
594
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
595
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
596
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
597
    "LatentCrop": LatentCrop,
598
    "LoraLoader": LoraLoader,
599
    "CLIPLoader": CLIPLoader,
comfyanonymous's avatar
comfyanonymous committed
600
601
}

602
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
Hacker 17082006's avatar
Hacker 17082006 committed
603
def load_custom_nodes():
604
605
    possible_modules = os.listdir(CUSTOM_NODE_PATH)
    try:
Hacker 17082006's avatar
Hacker 17082006 committed
606
        #Comment out these two lines if you want to test
607
608
609
        possible_modules.remove("example.py")
        possible_modules.remove("example_folder")
    except ValueError: pass
Hacker 17082006's avatar
Hacker 17082006 committed
610
    for possible_module in possible_modules:
611
612
        module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
        if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
613
        
Hacker 17082006's avatar
Hacker 17082006 committed
614
        try:
615
616
617
618
619
620
621
622
            if os.path.isfile(module_path):
                module_spec = importlib.util.spec_from_file_location(os.path.basename(module_path), module_path)
            else:
                module_spec = importlib.util.spec_from_file_location(module_path, "main.py")
            module = importlib.util.module_from_spec(module_spec)
            module_spec.loader.exec_module(module)
            if getattr(module, "NODE_CLASS_MAPPINGS") is not None:
                NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
Hacker 17082006's avatar
Hacker 17082006 committed
623
            else:
Hacker 17082006's avatar
Hacker 17082006 committed
624
                print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
Hacker 17082006's avatar
Hacker 17082006 committed
625
        except ImportError as e:
Hacker 17082006's avatar
Hacker 17082006 committed
626
            print(f"Cannot import {possible_module} module for custom nodes.")
Hacker 17082006's avatar
Hacker 17082006 committed
627
628
629
            print(e)

load_custom_nodes()