test_transforms.py 84.1 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
import pytest
14
15
16
17
18
19
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

20
21
22
23
24
try:
    from scipy import stats
except ImportError:
    stats = None

25
from common_utils import cycle_over, int_dtypes, float_dtypes
26
from _assert_utils import assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
31
32


33
class Tester(unittest.TestCase):
34

35
    def test_center_crop(self):
36
37
38
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
39
40
        owidth = random.randint(5, (width - 2) / 2) * 2

41
        img = torch.ones(3, height, width)
42
43
44
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
45
46
47
48
49
50
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
51
52
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
53
54
55
56
57
58
59
60
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
61
62
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
63
        oheight += 1
64
        owidth += 1
65
66
67
68
69
70
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
71
72
73
74
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
107
108
109
110
            assert_equal(
                output_tensor, output_pil, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

133
134
135
136
            assert_equal(
                output_center, img_center, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

155
            self.assertEqual(len(results), 5)
156
            for crop in results:
157
                self.assertEqual(crop.size, (crop_w, crop_h))
158
159
160
161
162
163
164
165

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
166
            self.assertEqual(results, expected_output)
167
168
169
170
171
172
173
174
175
176
177
178

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
179
180
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
181
182
                    five_crop = transforms.FiveCrop(crop_h)
                else:
183
184
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
185
186
187
188
189
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
190
191
192
193
194

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

195
196
197
198
199
200
201
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

202
203
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
204

205
206
207
208
209
210
211
212
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
213
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
214
        for _ in range(10):
215
            scale_min = max(round(random.random(), 2), min_scale)
216
            scale_range = (scale_min, scale_min + round(random.random(), 2))
217
            aspect_min = max(round(random.random(), 2), epsilon)
218
219
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
220
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
221
            aspect_ratio_obtained = w / h
222
223
224
225
226
227
228
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
229

230
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
231
        for _ in range(10):
232
233
234
235
236
237
238
239
240
241
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
242
243
244
245
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
246

247
    def test_randomperspective_fill(self):
248
249
250
251
252
253
254
255

        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomPerspective(fill={})

        t = transforms.RandomPerspective(fill=None)
        self.assertTrue(t.fill == 0)

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
281

282
283
284
285
286
287
288
289
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

290
    def test_resize(self):
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                for max_size in (None, 37, 1000):

                    t = transforms.Resize(osize, max_size=max_size)
                    result = t(img)

                    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
                    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                    # If size is an int, smaller edge of the image will be matched to this number.
                    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                    if height < width:
                        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
                        if max_size is not None and max_size < exp_w:
                            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    elif width < height:
                        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
                        if max_size is not None and max_size < exp_h:
                            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    else:
                        exp_w, exp_h = (osize, osize)  # (w, h)
                        if max_size is not None and max_size < osize:
                            exp_w, exp_h = max_size, max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
345

346
347
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
348

349
350
            for osize in test_output_sizes_2:
                oheight, owidth = osize
351

352
353
                t = transforms.Resize(osize)
                result = t(img)
354

355
                self.assertEqual((owidth, oheight), result.size)
356

357
358
359
360
        with self.assertWarnsRegex(UserWarning, r"Anti-alias option is always applied for PIL Image input"):
            t = transforms.Resize(osize, antialias=False)
            t(img)

361
362
363
364
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
365
        owidth = random.randint(5, (width - 2) / 2) * 2
366
367
368
369
370
371
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
372
373
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
374

375
376
377
378
379
380
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
381
382
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
383

384
385
386
387
388
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
389
390
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
391
        torch.testing.assert_close(result, img)
392

393
394
395
396
397
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
398
399
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
400

vfdev's avatar
vfdev committed
401
402
403
404
405
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

406
    @unittest.skipIf(stats is None, 'scipy.stats not available')
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
427
        self.assertGreater(p_value, 0.0001)
428
429
430
431

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

432
    @unittest.skipIf(stats is None, 'scipy.stats not available')
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
458
        self.assertGreater(p_value, 0.0001)
459
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
460
        self.assertGreater(p_value, 0.0001)
461
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
462
        self.assertGreater(p_value, 0.0001)
463
464
465
466
467

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

468
    @unittest.skipIf(stats is None, 'scipy.stats not available')
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
489
        self.assertGreater(p_value, 0.0001)
490
491
492
493

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

494
    def test_to_tensor(self):
495
        test_channels = [1, 3, 4]
496
497
        height, width = 4, 4
        trans = transforms.ToTensor()
498

499
500
501
502
503
504
505
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

506
507
508
509
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
510
            torch.testing.assert_close(output, input_data, check_stride=False)
511

512
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
513
514
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
515
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
516

517
518
519
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
520
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
521

522
523
524
525
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
526
        torch.testing.assert_close(input_data, output, check_dtype=False, check_stride=False)
527

528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def test_to_tensor_with_other_default_dtypes(self):
        current_def_dtype = torch.get_default_dtype()

        t = transforms.ToTensor()
        np_arr = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        img = Image.fromarray(np_arr)

        for dtype in [torch.float16, torch.float, torch.double]:
            torch.set_default_dtype(dtype)
            res = t(img)
            self.assertTrue(res.dtype == dtype, msg=f"{res.dtype} vs {dtype}")

        torch.set_default_dtype(current_def_dtype)

542
543
544
545
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

546
547
548
549
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
550

551
552
553
554
555
556
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
557
558
                    transform_script = torch.jit.script(F.convert_image_dtype)

559
                    output_image = transform(input_image)
560
561
                    output_image_script = transform_script(input_image, output_dtype)

562
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
563
564
565
566
567
568
569
570
571
572
573
574
575

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
576
                    transform_script = torch.jit.script(F.convert_image_dtype)
577
578
579
580
581
582
583
584

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
585
586
                        output_image_script = transform_script(input_image, output_dtype)

587
                        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
588
589
590
591
592
593
594
595
596
597
598
599
600

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
601
602
                    transform_script = torch.jit.script(F.convert_image_dtype)

603
                    output_image = transform(input_image)
604
605
                    output_image_script = transform_script(input_image, output_dtype)

606
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
625
626
                    transform_script = torch.jit.script(F.convert_image_dtype)

627
                    output_image = transform(input_image)
628
629
                    output_image_script = transform_script(input_image, output_dtype)

630
631
632
633
634
635
                    torch.testing.assert_close(
                        output_image_script,
                        output_image,
                        rtol=0.0,
                        atol=1e-6,
                        msg="{} vs {}".format(output_image_script, output_image),
636
                    )
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

670
671
672
673
674
675
676
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

677
        torch.testing.assert_close(output, expected_output)
678
679
680
681
682
683
684
685
686
687
688
689
690
691

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
692
            torch.testing.assert_close(input_data, output, check_stride=False)
693
694
695
696
697

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
698
            torch.testing.assert_close(output.numpy(), expected_output)
699
700
701
702
703

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
704
            torch.testing.assert_close(output, expected_output, check_stride=False)
705
706
707
708

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
709
710
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
        torch.testing.assert_close(input_data, output, check_stride=False)
711
712
713
714
715
716
717
718
719

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
720
        torch.testing.assert_close(output, expected_output, check_stride=False)
721
722
723
724

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
725
            transforms.Resize(256, interpolation=Image.LINEAR),
726
727
728
            transforms.ToTensor(),
        ])

729
730
731
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

732
733
734
735
736
737
738
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
739
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
740
741
742
743
744
745
746
747

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

748
749
750
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

751
752
753
754
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
755
        torch.testing.assert_close(output, expected_output)
756

757
    def test_1_channel_tensor_to_pil_image(self):
758
759
        to_tensor = transforms.ToTensor()

760
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
761
762
763
764
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

765
766
767
768
769
770
771
772
773
774
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
775
                self.assertEqual(img.mode, mode)
776
                torch.testing.assert_close(expected_output, to_tensor(img).numpy(), check_stride=False)
777
778
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
779
        self.assertEqual(img_F_mode.mode, 'F')
780
781
782
        torch.testing.assert_close(
            np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')), np.array(img_F_mode)
        )
783
784
785
786
787
788
789
790
791
792
793
794

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
795
                self.assertEqual(img.mode, mode)
796
797
798
                # note: we explicitly convert img's dtype because pytorch doesn't support uint16
                # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
                torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
799

surgan12's avatar
surgan12 committed
800
801
802
803
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
804
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
805
806
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
807
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
808
809
            split = img.split()
            for i in range(2):
810
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
surgan12's avatar
surgan12 committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
828
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
829
830
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
831
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
832
833
            split = img.split()
            for i in range(2):
834
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
835
836
837
838
839
840
841
842
843
844
845
846

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

847
848
849
850
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
851
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
852
853
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
854
                self.assertEqual(img.mode, mode)
855
856
            split = img.split()
            for i in range(3):
857
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
858

859
860
861
862
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
863

864
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
865
            # should raise if we try a mode for 4 or 1 or 2 channel images
866
867
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
868
            transforms.ToPILImage(mode='LA')(img_data)
869

Varun Agrawal's avatar
Varun Agrawal committed
870
871
872
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

873
874
875
876
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
877
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
878
879
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
880
                self.assertEqual(img.mode, mode)
881
882
            split = img.split()
            for i in range(3):
883
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
884

885
886
887
888
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

889
890
891
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

892
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
893
            # should raise if we try a mode for 4 or 1 or 2 channel images
894
895
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
896
            transforms.ToPILImage(mode='LA')(img_data)
897
898
899
900
901

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
902
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
903
904
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
905
                self.assertEqual(img.mode, mode)
906
907
908

            split = img.split()
            for i in range(4):
909
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
910

911
        img_data = torch.Tensor(4, 4, 4).uniform_()
912
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
913
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
914
            verify_img_data(img_data, expected_output, mode)
915

916
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
917
            # should raise if we try a mode for 3 or 1 or 2 channel images
918
919
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
920
            transforms.ToPILImage(mode='LA')(img_data)
921
922
923
924
925

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
926
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
927
928
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
929
                self.assertEqual(img.mode, mode)
930
931
            split = img.split()
            for i in range(4):
932
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
933

934
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
935
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
936
            verify_img_data(img_data, mode)
937

938
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
939
            # should raise if we try a mode for 3 or 1 or 2 channel images
940
941
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
942
            transforms.ToPILImage(mode='LA')(img_data)
943

Varun Agrawal's avatar
Varun Agrawal committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
962
                self.assertEqual(img.mode, mode)
963
                np.testing.assert_allclose(expected_output, to_tensor(img).numpy()[0])
Varun Agrawal's avatar
Varun Agrawal committed
964
965
966
967
968
969
970
971
972
973
974
975

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
976
                self.assertEqual(img.mode, mode)
977
                np.testing.assert_allclose(img_data, img)
Varun Agrawal's avatar
Varun Agrawal committed
978
979

    def test_tensor_bad_types_to_pil_image(self):
980
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
981
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
982
983
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
984

985
    def test_ndarray_bad_types_to_pil_image(self):
986
        trans = transforms.ToPILImage()
987
988
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
989
            trans(np.ones([4, 4, 1], np.int64))
990
        with self.assertRaisesRegex(TypeError, reg_msg):
991
            trans(np.ones([4, 4, 1], np.uint16))
992
        with self.assertRaisesRegex(TypeError, reg_msg):
993
            trans(np.ones([4, 4, 1], np.uint32))
994
        with self.assertRaisesRegex(TypeError, reg_msg):
995
996
            trans(np.ones([4, 4, 1], np.float64))

997
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
998
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
999
1000
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
1001

1002
1003
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
1004
1005
        random_state = random.getstate()
        random.seed(42)
1006
1007
1008
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

1009
        num_samples = 250
1010
        num_vertical = 0
1011
        for _ in range(num_samples):
1012
1013
1014
1015
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1016
1017
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1018
        self.assertGreater(p_value, 0.0001)
1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1029
        self.assertGreater(p_value, 0.0001)
1030

1031
1032
1033
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1034
1035
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1036
1037
        random_state = random.getstate()
        random.seed(42)
1038
1039
1040
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1041
        num_samples = 250
1042
        num_horizontal = 0
1043
        for _ in range(num_samples):
1044
1045
1046
1047
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1048
1049
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1050
        self.assertGreater(p_value, 0.0001)
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1061
        self.assertGreater(p_value, 0.0001)
1062

1063
1064
1065
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1066
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1079
            self.assertTrue(samples_from_standard_normal(normalized))
1080
1081
        random.setstate(random_state)

1082
1083
1084
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1085
1086
1087
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1088
        assert_equal(tensor, tensor_inplace)
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1099
1100
1101
1102
1103
1104
1105
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
1106
        target = F.normalize(img, mean, std)
1107
1108
1109
1110
1111
1112
1113

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
1114
1115
        torch.testing.assert_close(target, result1)
        torch.testing.assert_close(target, result2)
1116

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1128
            self.assertEqual(y_pil.mode, x_pil.mode)
1129
1130

            y_pil_2 = color_jitter(x_pil_2)
1131
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1132

1133
1134
1135
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1136
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1149
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1160
1161
1162
1163
        torch.testing.assert_close(cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False,
                                   msg="cov not close to 1")
        torch.testing.assert_close(mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False,
                                   msg="mean not close to 0")
ekka's avatar
ekka committed
1164

1165
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1166
1167
        whitening.__repr__()

1168
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1169
1170
1171
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1172
1173
1174
1175
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1176
1177
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1189
            s_rad = [math.radians(sh_) for sh_ in sh]
1190
1191
1192
1193
1194
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1195
            # 1) Check transformation matrix:
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1221
1222
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1223
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1224
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1225
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1226
1227
1228
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1229
1230
1231
1232
1233
1234
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1235
1236
1237
1238
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1239
            self.assertEqual(result.size, pil_img.size)
1240
1241
1242
1243
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1244
1245
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
1246
                            "n diff pixels={}\n".format(n_diff_pixels))
1247
1248
1249

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1250
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1251
1252
1253

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1254
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1255
1256
1257

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1258
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1259
1260

        # Test shear
ptrblck's avatar
ptrblck committed
1261
        sh = [45.0, 25.0]
1262
1263
1264
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
1265
        for a in range(-90, 90, 36):
1266
            for t1 in range(-10, 10, 5):
1267
                for s in [0.77, 1.0, 1.27]:
1268
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1269
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1270

1271
1272
1273
1274
1275
1276
1277
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

1278
1279
1280
1281
1282
1283
1284
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomRotation(0, fill={})

        t = transforms.RandomRotation(0, fill=None)
        self.assertTrue(t.fill == 0)

1285
1286
        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1287
        self.assertTrue(angle > -10 and angle < 10)
1288
1289
1290

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1291
        self.assertTrue(-10 < angle < 10)
1292

1293
1294
1295
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1296
1297
1298
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1299
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1300
1301

        # assert changed type warning
1302
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1303
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1304
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1325
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1326

1327
1328
1329
1330
1331
1332
1333
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

1334
1335
1336
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1337
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1338
1339
1340
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1341
1342
1343
1344
1345
1346
1347
1348
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1349
1350
1351
1352

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1353
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1354
1355
1356
1357
1358
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1359
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1360
1361
1362
1363
1364
1365

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1366
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1367
            t = transforms.RandomAffine(10, interpolation=2)
1368
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1369

1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1385
1386
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1387
        assert_equal(gray_np, gray_np_1)
1388
1389
1390
1391
1392

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1393
1394
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1395
1396
1397
        assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)
1398
1399
1400
1401
1402

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1403
1404
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1405
        assert_equal(gray_np, gray_np_3)
1406
1407
1408
1409
1410

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1411
1412
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1413
1414
1415
        assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        assert_equal(gray_np, gray_np_4[:, :, 0], check_stride=False)
1416

1417
1418
1419
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1439
1440
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1441
1442
1443
1444
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1445
        self.assertGreater(p_value, 0.0001)
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1466
        self.assertGreater(p_value, 0.0001)
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1480
1481
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1482
1483
1484
        assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)
1485
1486
1487
1488
1489

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1490
1491
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1492
        assert_equal(x_np, gray_np_2)
1493
1494
1495
1496
1497

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1498
1499
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1500
        assert_equal(gray_np, gray_np_3)
1501
1502
1503
1504
1505

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1506
1507
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1508
        assert_equal(gray_np, gray_np_3)
1509

1510
1511
1512
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1523
    @unittest.skipIf(stats is None, 'scipy.stats not available')
1524
1525
1526
    def test_random_erasing(self):
        img = torch.ones(3, 128, 128)

1527
        t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
1528
1529
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratio = h / w
1530
1531
1532
        # Add some tolerance due to the rounding and int conversion used in the transform
        tol = 0.05
        self.assertTrue(1 / 3 - tol <= aspect_ratio <= 3 + tol)
1533
1534
1535
1536
1537
1538
1539
1540
1541

        aspect_ratios = []
        random.seed(42)
        trial = 1000
        for _ in range(trial):
            y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
            aspect_ratios.append(h / w)

        count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
1542
1543
        p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
        self.assertGreater(p_value, 0.0001)
1544

1545
1546
1547
        # Checking if RandomErasing can be printed as string
        t.__repr__()

1548

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
class TestPad:

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding, fill=fill),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
        torch.testing.assert_close(
            h_padded, torch.full_like(h_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        torch.testing.assert_close(
            w_padded, torch.full_like(w_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                      transforms.ToPILImage()(img))

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8), check_stride=False)
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8), check_stride=False)
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size], check_stride=False)


1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
@pytest.mark.parametrize('fn, trans, config', [
                        (F.invert, transforms.RandomInvert, {}),
                        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
                        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
                        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
                        (F.autocontrast, transforms.RandomAutocontrast, {}),
                        (F.equalize, transforms.RandomEqualize, {})])
@pytest.mark.parametrize('p', (.5, .7))
def test_randomness(fn, trans, config, p):
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

    inv_img = fn(img, **config)

    num_samples = 250
    counts = 0
    for _ in range(num_samples):
        tranformation = trans(p=p, **config)
        tranformation.__repr__()
        out = tranformation(img)
        if out == inv_img:
            counts += 1

    p_value = stats.binom_test(counts, num_samples, p=p)
    random.setstate(random_state)
    assert p_value > 0.0001


1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


@pytest.mark.skipif(Image.__version__ >= '7', reason="Temporarily disabled")
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
    x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
              0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
              111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
             30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
             107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
             0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
             119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_pil = Image.fromarray(x_np, mode='RGB')

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
    x_rgb = Image.fromarray(x_np, mode='RGB')

    x_l = x_rgb.convert('L')
    assert F.adjust_brightness(x_l, 2).mode == 'L'
    assert F.adjust_saturation(x_l, 2).mode == 'L'
    assert F.adjust_contrast(x_l, 2).mode == 'L'
    assert F.adjust_hue(x_l, 0.4).mode == 'L'
    assert F.adjust_sharpness(x_l, 2).mode == 'L'
    assert F.adjust_gamma(x_l, 0.5).mode == 'L'


1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


@pytest.mark.parametrize('mode', ["L", "RGB", "F"])
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1995
1996
if __name__ == '__main__':
    unittest.main()