functional.py 66.3 KB
Newer Older
1
import math
2
import numbers
3
import sys
4
import warnings
5
from enum import Enum
6
from typing import Any, List, Optional, Tuple, Union
7
8
9

import numpy as np
import torch
10
from PIL import Image
11
from PIL.Image import Image as PILImage
12
13
from torch import Tensor

14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

19
from ..utils import _log_api_usage_once
20
from . import _functional_pil as F_pil, _functional_tensor as F_t
21

22

23
class InterpolationMode(Enum):
24
    """Interpolation modes
25
26
    Available interpolation methods are ``nearest``, ``nearest-exact``, ``bilinear``, ``bicubic``, ``box``, ``hamming``,
    and ``lanczos``.
27
    """
28

29
    NEAREST = "nearest"
30
    NEAREST_EXACT = "nearest-exact"
31
32
33
34
35
36
37
38
39
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
40
41
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
42
    inverse_modes_mapping = {
43
44
45
46
47
48
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
49
50
51
52
53
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
54
55
56
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
57
    InterpolationMode.NEAREST_EXACT: 0,
58
59
60
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
61
62
}

vfdev's avatar
vfdev committed
63
64
65
_is_pil_image = F_pil._is_pil_image


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def get_dimensions(img: Tensor) -> List[int]:
    """Returns the dimensions of an image as [channels, height, width].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image dimensions.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_dimensions)
    if isinstance(img, torch.Tensor):
        return F_t.get_dimensions(img)

    return F_pil.get_dimensions(img)


83
84
85
86
87
88
89
90
def get_image_size(img: Tensor) -> List[int]:
    """Returns the size of an image as [width, height].

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        List[int]: The image size.
vfdev's avatar
vfdev committed
91
    """
92
93
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_size)
vfdev's avatar
vfdev committed
94
    if isinstance(img, torch.Tensor):
95
        return F_t.get_image_size(img)
96

97
    return F_pil.get_image_size(img)
98

vfdev's avatar
vfdev committed
99

100
101
102
103
104
105
106
107
def get_image_num_channels(img: Tensor) -> int:
    """Returns the number of channels of an image.

    Args:
        img (PIL Image or Tensor): The image to be checked.

    Returns:
        int: The number of channels.
108
    """
109
110
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(get_image_num_channels)
111
    if isinstance(img, torch.Tensor):
112
        return F_t.get_image_num_channels(img)
113

114
    return F_pil.get_image_num_channels(img)
115
116


vfdev's avatar
vfdev committed
117
118
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
119
120
121
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
122
123
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
124
    return img.ndim in {2, 3}
125
126


127
def to_tensor(pic: Union[PILImage, np.ndarray]) -> Tensor:
128
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
129
    This function does not support torchscript.
130

131
    See :class:`~torchvision.transforms.ToTensor` for more details.
132
133
134
135
136
137
138

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
139
140
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_tensor)
141
    if not (F_pil._is_pil_image(pic) or _is_numpy(pic)):
142
        raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}")
143

144
    if _is_numpy(pic) and not _is_numpy_image(pic):
145
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
146

147
148
    default_float_dtype = torch.get_default_dtype()

149
150
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
151
152
153
        if pic.ndim == 2:
            pic = pic[:, :, None]

154
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
155
        # backward compatibility
156
        if isinstance(img, torch.ByteTensor):
157
            return img.to(dtype=default_float_dtype).div(255)
158
159
        else:
            return img
160
161

    if accimage is not None and isinstance(pic, accimage.Image):
162
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
163
        pic.copyto(nppic)
164
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
165
166

    # handle PIL Image
167
    mode_to_nptype = {"I": np.int32, "I;16" if sys.byteorder == "little" else "I;16B": np.int16, "F": np.float32}
168
    img = torch.from_numpy(np.array(pic, mode_to_nptype.get(pic.mode, np.uint8), copy=True))
169

170
    if pic.mode == "1":
171
        img = 255 * img
172
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
173
    # put it from HWC to CHW format
174
    img = img.permute((2, 0, 1)).contiguous()
175
    if isinstance(img, torch.ByteTensor):
176
        return img.to(dtype=default_float_dtype).div(255)
177
178
179
180
    else:
        return img


181
def pil_to_tensor(pic: Any) -> Tensor:
182
    """Convert a ``PIL Image`` to a tensor of the same type.
183
    This function does not support torchscript.
184

vfdev's avatar
vfdev committed
185
    See :class:`~torchvision.transforms.PILToTensor` for more details.
186

187
188
189
190
    .. note::

        A deep copy of the underlying array is performed.

191
192
193
194
195
196
    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
197
198
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pil_to_tensor)
199
    if not F_pil._is_pil_image(pic):
200
        raise TypeError(f"pic should be PIL Image. Got {type(pic)}")
201
202

    if accimage is not None and isinstance(pic, accimage.Image):
203
204
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
205
206
207
208
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
209
    img = torch.as_tensor(np.array(pic, copy=True))
210
    img = img.view(pic.size[1], pic.size[0], F_pil.get_image_num_channels(pic))
211
212
213
214
215
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


216
217
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
218
    This function does not support PIL Image.
219
220
221
222
223
224

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
225
        Tensor: Converted image
226
227
228
229
230
231
232
233
234
235
236
237

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
238
239
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(convert_image_dtype)
240
    if not isinstance(image, torch.Tensor):
241
        raise TypeError("Input img should be Tensor Image")
242
243

    return F_t.convert_image_dtype(image, dtype)
244
245


246
def to_pil_image(pic, mode=None):
247
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
248

249
    See :class:`~torchvision.transforms.ToPILImage` for more details.
250
251
252
253
254

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

255
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
256
257
258
259

    Returns:
        PIL Image: Image converted to PIL Image.
    """
260
261
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_pil_image)
262

263
264
265
266
267
    if isinstance(pic, torch.Tensor):
        if pic.ndim == 3:
            pic = pic.permute((1, 2, 0))
        pic = pic.numpy(force=True)
    elif not isinstance(pic, np.ndarray):
268
        raise TypeError(f"pic should be Tensor or ndarray. Got {type(pic)}.")
269

270
271
272
273
274
    if pic.ndim == 2:
        # if 2D image, add channel dimension (HWC)
        pic = np.expand_dims(pic, 2)
    if pic.ndim != 3:
        raise ValueError(f"pic should be 2/3 dimensional. Got {pic.ndim} dimensions.")
Varun Agrawal's avatar
Varun Agrawal committed
275

276
277
    if pic.shape[-1] > 4:
        raise ValueError(f"pic should not have > 4 channels. Got {pic.shape[-1]} channels.")
278

279
280
    npimg = pic

281
282
    if np.issubdtype(npimg.dtype, np.floating) and mode != "F":
        npimg = (npimg * 255).astype(np.uint8)
283
284
285
286
287

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
288
            expected_mode = "L"
vfdev's avatar
vfdev committed
289
        elif npimg.dtype == np.int16:
290
            expected_mode = "I;16" if sys.byteorder == "little" else "I;16B"
vfdev's avatar
vfdev committed
291
        elif npimg.dtype == np.int32:
292
            expected_mode = "I"
293
        elif npimg.dtype == np.float32:
294
            expected_mode = "F"
295
        if mode is not None and mode != expected_mode:
296
            raise ValueError(f"Incorrect mode ({mode}) supplied for input type {np.dtype}. Should be {expected_mode}")
297
298
        mode = expected_mode

surgan12's avatar
surgan12 committed
299
    elif npimg.shape[2] == 2:
300
        permitted_2_channel_modes = ["LA"]
surgan12's avatar
surgan12 committed
301
        if mode is not None and mode not in permitted_2_channel_modes:
302
            raise ValueError(f"Only modes {permitted_2_channel_modes} are supported for 2D inputs")
surgan12's avatar
surgan12 committed
303
304

        if mode is None and npimg.dtype == np.uint8:
305
            mode = "LA"
surgan12's avatar
surgan12 committed
306

307
    elif npimg.shape[2] == 4:
308
        permitted_4_channel_modes = ["RGBA", "CMYK", "RGBX"]
309
        if mode is not None and mode not in permitted_4_channel_modes:
310
            raise ValueError(f"Only modes {permitted_4_channel_modes} are supported for 4D inputs")
311
312

        if mode is None and npimg.dtype == np.uint8:
313
            mode = "RGBA"
314
    else:
315
        permitted_3_channel_modes = ["RGB", "YCbCr", "HSV"]
316
        if mode is not None and mode not in permitted_3_channel_modes:
317
            raise ValueError(f"Only modes {permitted_3_channel_modes} are supported for 3D inputs")
318
        if mode is None and npimg.dtype == np.uint8:
319
            mode = "RGB"
320
321

    if mode is None:
322
        raise TypeError(f"Input type {npimg.dtype} is not supported")
323
324
325
326

    return Image.fromarray(npimg, mode=mode)


327
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
328
    """Normalize a float tensor image with mean and standard deviation.
329
    This transform does not support PIL Image.
330

331
    .. note::
surgan12's avatar
surgan12 committed
332
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
333

334
    See :class:`~torchvision.transforms.Normalize` for more details.
335
336

    Args:
337
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
338
        mean (sequence): Sequence of means for each channel.
339
        std (sequence): Sequence of standard deviations for each channel.
340
        inplace(bool,optional): Bool to make this operation inplace.
341
342
343
344

    Returns:
        Tensor: Normalized Tensor image.
    """
345
346
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(normalize)
347
    if not isinstance(tensor, torch.Tensor):
348
        raise TypeError(f"img should be Tensor Image. Got {type(tensor)}")
349

350
    return F_t.normalize(tensor, mean=mean, std=std, inplace=inplace)
351
352


vfdev's avatar
vfdev committed
353
def _compute_resized_output_size(
354
355
356
357
    image_size: Tuple[int, int],
    size: Optional[List[int]],
    max_size: Optional[int] = None,
    allow_size_none: bool = False,  # only True in v2
vfdev's avatar
vfdev committed
358
) -> List[int]:
359
360
361
362
363
364
365
366
367
368
    h, w = image_size
    short, long = (w, h) if w <= h else (h, w)
    if size is None:
        if not allow_size_none:
            raise ValueError("This should never happen!!")
        if not isinstance(max_size, int):
            raise ValueError(f"max_size must be an integer when size is None, but got {max_size} instead.")
        new_short, new_long = int(max_size * short / long), max_size
        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    elif len(size) == 1:  # specified size only for the smallest edge
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        requested_new_short = size if isinstance(size, int) else size[0]
        new_short, new_long = requested_new_short, int(requested_new_short * long / short)

        if max_size is not None:
            if max_size <= requested_new_short:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
    else:  # specified both h and w
        new_w, new_h = size[1], size[0]
    return [new_h, new_w]


387
388
389
390
391
def resize(
    img: Tensor,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
392
    antialias: Optional[bool] = True,
393
) -> Tensor:
vfdev's avatar
vfdev committed
394
    r"""Resize the input image to the given size.
395
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
396
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
397
398

    Args:
vfdev's avatar
vfdev committed
399
        img (PIL Image or Tensor): Image to be resized.
400
401
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
402
            the smaller edge of the image will be matched to this number maintaining
403
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
404
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
405
406
407

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
408
409
410
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
411
412
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
413
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
414
        max_size (int, optional): The maximum allowed for the longer edge of
415
            the resized image. If the longer edge of the image is greater
Nicolas Hug's avatar
Nicolas Hug committed
416
            than ``max_size`` after being resized according to ``size``,
417
418
            ``size`` will be overruled so that the longer edge is equal to
            ``max_size``.
Nicolas Hug's avatar
Nicolas Hug committed
419
            As a result, the smaller edge may be shorter than ``size``. This
420
421
            is only supported if ``size`` is an int (or a sequence of length
            1 in torchscript mode).
422
423
424
425
426
427
428
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

429
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
430
431
432
433
434
435
436
437
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

438
439
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
440
441

    Returns:
vfdev's avatar
vfdev committed
442
        PIL Image or Tensor: Resized image.
443
    """
444
445
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resize)
446

447
448
449
450
451
452
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
    if isinstance(size, (list, tuple)):
        if len(size) not in [1, 2]:
            raise ValueError(
                f"Size must be an int or a 1 or 2 element tuple/list, not a {len(size)} element tuple/list"
            )
        if max_size is not None and len(size) != 1:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )

    _, image_height, image_width = get_dimensions(img)
    if isinstance(size, int):
        size = [size]
vfdev's avatar
vfdev committed
468
    output_size = _compute_resized_output_size((image_height, image_width), size, max_size)
469

470
    if [image_height, image_width] == output_size:
471
472
        return img

vfdev's avatar
vfdev committed
473
    if not isinstance(img, torch.Tensor):
474
        if antialias is False:
475
            warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
476
        pil_interpolation = pil_modes_mapping[interpolation]
477
        return F_pil.resize(img, size=output_size, interpolation=pil_interpolation)
vfdev's avatar
vfdev committed
478

479
    return F_t.resize(img, size=output_size, interpolation=interpolation.value, antialias=antialias)
480
481


482
def pad(img: Tensor, padding: List[int], fill: Union[int, float] = 0, padding_mode: str = "constant") -> Tensor:
483
    r"""Pad the given image on all sides with the given "pad" value.
484
    If the image is torch Tensor, it is expected
485
486
487
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
488
489

    Args:
490
        img (PIL Image or Tensor): Image to be padded.
491
492
493
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
494
            this is the padding for the left, top, right and bottom borders respectively.
495
496
497
498

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
499
        fill (number or tuple): Pixel fill value for constant fill. Default is 0.
500
501
502
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
503
            Only int or tuple value is supported for PIL Image.
504
505
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
506
507
508

            - constant: pads with a constant value, this value is specified with fill

509
510
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
511

512
513
514
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
515

516
517
518
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
519
520

    Returns:
521
        PIL Image or Tensor: Padded image.
522
    """
523
524
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(pad)
525
526
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
527

528
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
529
530


vfdev's avatar
vfdev committed
531
532
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
533
    If the image is torch Tensor, it is expected
534
535
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then cropped.
536

537
    Args:
vfdev's avatar
vfdev committed
538
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
539
540
541
542
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
543

544
    Returns:
vfdev's avatar
vfdev committed
545
        PIL Image or Tensor: Cropped image.
546
547
    """

548
549
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(crop)
vfdev's avatar
vfdev committed
550
551
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
552

vfdev's avatar
vfdev committed
553
    return F_t.crop(img, top, left, height, width)
554

vfdev's avatar
vfdev committed
555
556
557

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
558
    If the image is torch Tensor, it is expected
559
560
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
561

562
    Args:
vfdev's avatar
vfdev committed
563
        img (PIL Image or Tensor): Image to be cropped.
564
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
565
566
            it is used for both directions.

567
    Returns:
vfdev's avatar
vfdev committed
568
        PIL Image or Tensor: Cropped image.
569
    """
570
571
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(center_crop)
572
573
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
574
575
576
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

577
    _, image_height, image_width = get_dimensions(img)
578
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
579

580
581
582
583
584
585
586
587
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
588
        _, image_height, image_width = get_dimensions(img)
589
590
591
        if crop_width == image_width and crop_height == image_height:
            return img

592
593
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
594
    return crop(img, crop_top, crop_left, crop_height, crop_width)
595
596


597
def resized_crop(
598
599
600
601
602
603
604
    img: Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
605
    antialias: Optional[bool] = True,
606
607
) -> Tensor:
    """Crop the given image and resize it to desired size.
608
    If the image is torch Tensor, it is expected
609
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
610

611
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
612
613

    Args:
614
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
615
616
617
618
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
619
        size (sequence or int): Desired output size. Same semantics as ``resize``.
620
621
622
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
623
624
            ``InterpolationMode.NEAREST_EXACT``, ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are
            supported.
625
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
626
627
628
629
630
631
632
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

633
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
634
635
636
637
638
639
640
641
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

642
643
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
644
    Returns:
645
        PIL Image or Tensor: Cropped image.
646
    """
647
648
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(resized_crop)
649
    img = crop(img, top, left, height, width)
650
    img = resize(img, size, interpolation, antialias=antialias)
651
652
653
    return img


654
def hflip(img: Tensor) -> Tensor:
655
    """Horizontally flip the given image.
656
657

    Args:
vfdev's avatar
vfdev committed
658
        img (PIL Image or Tensor): Image to be flipped. If img
659
            is a Tensor, it is expected to be in [..., H, W] format,
660
            where ... means it can have an arbitrary number of leading
661
            dimensions.
662
663

    Returns:
vfdev's avatar
vfdev committed
664
        PIL Image or Tensor:  Horizontally flipped image.
665
    """
666
667
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(hflip)
668
669
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
670

671
    return F_t.hflip(img)
672
673


674
def _get_perspective_coeffs(startpoints: List[List[int]], endpoints: List[List[int]]) -> List[float]:
675
676
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
677
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
678
679
680
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
681
682
683
684
685
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

686
687
688
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
689
690
691
692
693
    if len(startpoints) != 4 or len(endpoints) != 4:
        raise ValueError(
            f"Please provide exactly four corners, got {len(startpoints)} startpoints and {len(endpoints)} endpoints."
        )
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float64)
694
695
696
697

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
698

699
700
701
    b_matrix = torch.tensor(startpoints, dtype=torch.float64).view(8)
    # do least squares in double precision to prevent numerical issues
    res = torch.linalg.lstsq(a_matrix, b_matrix, driver="gels").solution.to(torch.float32)
702

703
    output: List[float] = res.tolist()
704
    return output
705
706


707
def perspective(
708
709
710
711
712
    img: Tensor,
    startpoints: List[List[int]],
    endpoints: List[List[int]],
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
713
714
) -> Tensor:
    """Perform perspective transform of the given image.
715
    If the image is torch Tensor, it is expected
716
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
717
718

    Args:
719
720
721
722
723
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
724
725
726
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
727
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
728
729
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
730
731
732
733

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
734

735
    Returns:
736
        PIL Image or Tensor: transformed Image.
737
    """
738
739
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(perspective)
740

741
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
742

743
744
745
746
747
748
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )
749

750
    if not isinstance(img, torch.Tensor):
751
752
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
753

754
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
755
756


757
def vflip(img: Tensor) -> Tensor:
758
    """Vertically flip the given image.
759
760

    Args:
vfdev's avatar
vfdev committed
761
        img (PIL Image or Tensor): Image to be flipped. If img
762
            is a Tensor, it is expected to be in [..., H, W] format,
763
            where ... means it can have an arbitrary number of leading
764
            dimensions.
765
766

    Returns:
767
        PIL Image or Tensor:  Vertically flipped image.
768
    """
769
770
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(vflip)
771
772
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
773

774
    return F_t.vflip(img)
775
776


vfdev's avatar
vfdev committed
777
778
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
779
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
780
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
781
782
783
784
785
786

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
787
788
789
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
790
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
791

792
    Returns:
793
       tuple: tuple (tl, tr, bl, br, center)
794
       Corresponding top left, top right, bottom left, bottom right and center crop.
795
    """
796
797
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(five_crop)
798
799
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
800
801
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
802

vfdev's avatar
vfdev committed
803
804
805
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

806
    _, image_height, image_width = get_dimensions(img)
807
808
809
810
811
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
812
813
814
815
816
817
818
819
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
820
821


Philip Meier's avatar
Philip Meier committed
822
823
824
def ten_crop(
    img: Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
vfdev's avatar
vfdev committed
825
826
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
827
    flipped version of these (horizontal flipping is used by default).
828
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
829
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
830
831
832
833
834

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

835
    Args:
vfdev's avatar
vfdev committed
836
        img (PIL Image or Tensor): Image to be cropped.
837
        size (sequence or int): Desired output size of the crop. If size is an
838
            int instead of sequence like (h, w), a square crop (size, size) is
839
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
840
        vertical_flip (bool): Use vertical flipping instead of horizontal
841
842

    Returns:
843
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
844
845
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
846
    """
847
848
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(ten_crop)
849
850
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
851
852
853
854
855
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
856
857
858
859
860
861
862
863
864
865
866
867

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


868
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
869
    """Adjust brightness of an image.
870
871

    Args:
vfdev's avatar
vfdev committed
872
        img (PIL Image or Tensor): Image to be adjusted.
873
874
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
875
        brightness_factor (float):  How much to adjust the brightness. Can be
876
            any non-negative number. 0 gives a black image, 1 gives the
877
878
879
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
880
        PIL Image or Tensor: Brightness adjusted image.
881
    """
882
883
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_brightness)
884
885
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
886

887
    return F_t.adjust_brightness(img, brightness_factor)
888
889


890
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
891
    """Adjust contrast of an image.
892
893

    Args:
vfdev's avatar
vfdev committed
894
        img (PIL Image or Tensor): Image to be adjusted.
895
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
896
            where ... means it can have an arbitrary number of leading dimensions.
897
        contrast_factor (float): How much to adjust the contrast. Can be any
898
            non-negative number. 0 gives a solid gray image, 1 gives the
899
900
901
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
902
        PIL Image or Tensor: Contrast adjusted image.
903
    """
904
905
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_contrast)
906
907
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
908

909
    return F_t.adjust_contrast(img, contrast_factor)
910
911


912
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
913
914
915
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
916
        img (PIL Image or Tensor): Image to be adjusted.
917
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
918
            where ... means it can have an arbitrary number of leading dimensions.
919
920
921
922
923
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
924
        PIL Image or Tensor: Saturation adjusted image.
925
    """
926
927
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_saturation)
928
929
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
930

931
    return F_t.adjust_saturation(img, saturation_factor)
932
933


934
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
935
936
937
938
939
940
941
942
943
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

944
945
946
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
947
948

    Args:
949
        img (PIL Image or Tensor): Image to be adjusted.
950
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
951
            where ... means it can have an arbitrary number of leading dimensions.
952
            If img is PIL Image mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
953
954
955
            Note: the pixel values of the input image has to be non-negative for conversion to HSV space;
            thus it does not work if you normalize your image to an interval with negative values,
            or use an interpolation that generates negative values before using this function.
956
957
958
959
960
961
962
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
963
        PIL Image or Tensor: Hue adjusted image.
964
    """
965
966
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_hue)
967
968
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
969

970
    return F_t.adjust_hue(img, hue_factor)
971
972


973
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
974
    r"""Perform gamma correction on an image.
975
976
977
978

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

979
980
981
982
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
983

984
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
985
986

    Args:
987
        img (PIL Image or Tensor): PIL Image to be adjusted.
988
989
990
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
991
992
993
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
994
        gain (float): The constant multiplier.
995
996
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
997
    """
998
999
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_gamma)
1000
1001
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
1002

1003
    return F_t.adjust_gamma(img, gamma, gain)
1004
1005


vfdev's avatar
vfdev committed
1006
def _get_inverse_affine_matrix(
1007
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
vfdev's avatar
vfdev committed
1008
) -> List[float]:
1009
1010
    # Helper method to compute inverse matrix for affine transformation

1011
1012
1013
    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
1014
1015
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
1016
1017
1018
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
1019
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
1020
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
1021
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
1022
1023
1024
1025
1026
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
1027
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1
1028

1029
    rot = math.radians(angle)
1030
1031
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])
1032
1033
1034
1035
1036

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
1037
1038
1039
1040
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
1041

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d, -b, 0.0, -c, a, 0.0]
        matrix = [x / scale for x in matrix]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
        matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx
        matrix[5] += cy
    else:
        matrix = [a, b, 0.0, c, d, 0.0]
        matrix = [x * scale for x in matrix]
        # Apply inverse of center translation: RSS * C^-1
        matrix[2] += matrix[0] * (-cx) + matrix[1] * (-cy)
        matrix[5] += matrix[3] * (-cx) + matrix[4] * (-cy)
        # Apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx + tx
        matrix[5] += cy + ty
1062

vfdev's avatar
vfdev committed
1063
    return matrix
1064

vfdev's avatar
vfdev committed
1065

vfdev's avatar
vfdev committed
1066
def rotate(
1067
1068
1069
1070
1071
1072
    img: Tensor,
    angle: float,
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    expand: bool = False,
    center: Optional[List[int]] = None,
    fill: Optional[List[float]] = None,
vfdev's avatar
vfdev committed
1073
1074
) -> Tensor:
    """Rotate the image by angle.
1075
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1076
1077
1078
1079
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
1080
        angle (number): rotation angle value in degrees, counter-clockwise.
1081
1082
1083
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1084
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
vfdev's avatar
vfdev committed
1085
1086
1087
1088
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1089
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
1090
            Default is the center of the image.
1091
1092
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1093
1094
1095
1096

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
1097
1098
1099
1100
1101
1102
    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
1103
1104
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rotate)
1105

1106
1107
1108
1109
1110
1111
1112
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1113
1114
1115
1116
1117
1118
1119
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

    if not isinstance(img, torch.Tensor):
1120
1121
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
1122
1123
1124

    center_f = [0.0, 0.0]
    if center is not None:
1125
        _, height, width = get_dimensions(img)
1126
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1127
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1128

vfdev's avatar
vfdev committed
1129
1130
1131
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
1132
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
1133
1134


vfdev's avatar
vfdev committed
1135
def affine(
1136
1137
1138
1139
1140
1141
1142
    img: Tensor,
    angle: float,
    translate: List[int],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    fill: Optional[List[float]] = None,
1143
    center: Optional[List[int]] = None,
vfdev's avatar
vfdev committed
1144
1145
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1146
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1147
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1148
1149

    Args:
vfdev's avatar
vfdev committed
1150
        img (PIL Image or Tensor): image to transform.
1151
1152
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1153
        scale (float): overall scale
1154
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
1155
1156
            If a sequence is specified, the first value corresponds to a shear parallel to the x-axis, while
            the second value corresponds to a shear parallel to the y-axis.
1157
1158
1159
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1160
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1161
1162
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1163
1164
1165
1166

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1167
1168
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
            Default is the center of the image.
vfdev's avatar
vfdev committed
1169
1170
1171

    Returns:
        PIL Image or Tensor: Transformed image.
1172
    """
1173
1174
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(affine)
1175

1176
1177
1178
1179
1180
1181
1182
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise TypeError(
            "Argument interpolation should be a InterpolationMode or a corresponding Pillow integer constant"
        )

vfdev's avatar
vfdev committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
1214
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")
vfdev's avatar
vfdev committed
1215

1216
1217
1218
    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

1219
    _, height, width = get_dimensions(img)
vfdev's avatar
vfdev committed
1220
    if not isinstance(img, torch.Tensor):
1221
        # center = (width * 0.5 + 0.5, height * 0.5 + 0.5)
vfdev's avatar
vfdev committed
1222
1223
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
1224
        if center is None:
1225
            center = [width * 0.5, height * 0.5]
vfdev's avatar
vfdev committed
1226
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1227
1228
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1229

1230
1231
    center_f = [0.0, 0.0]
    if center is not None:
1232
        _, height, width = get_dimensions(img)
1233
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
1234
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, [width, height])]
1235

1236
    translate_f = [1.0 * t for t in translate]
1237
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)
1238
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1239
1240


1241
1242
# Looks like to_grayscale() is a stand-alone functional that is never called
# from the transform classes. Perhaps it's still here for BC? I can't be
1243
# bothered to dig.
1244
@torch.jit.unused
1245
def to_grayscale(img, num_output_channels=1):
1246
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1247
    This transform does not support torch Tensor.
1248
1249

    Args:
1250
        img (PIL Image): PIL Image to be converted to grayscale.
1251
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1252
1253

    Returns:
1254
1255
        PIL Image: Grayscale version of the image.

1256
1257
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1258
    """
1259
1260
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(to_grayscale)
1261
1262
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1263

1264
1265
1266
1267
1268
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1269
1270
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1271
1272
1273

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
1274
        please, consider using :meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.
1275
1276
1277
1278
1279
1280
1281
1282

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1283
1284
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1285
    """
1286
1287
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(rgb_to_grayscale)
1288
1289
1290
1291
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1292
1293


1294
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1295
    """Erase the input Tensor Image with given value.
1296
    This transform does not support PIL Image.
1297
1298
1299
1300
1301
1302
1303
1304

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
1305
        inplace(bool, optional): For in-place operations. By default, is set False.
1306
1307
1308
1309

    Returns:
        Tensor Image: Erased image.
    """
1310
1311
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(erase)
1312
    if not isinstance(img, torch.Tensor):
1313
        raise TypeError(f"img should be Tensor Image. Got {type(img)}")
1314

1315
    return F_t.erase(img, i, j, h, w, v, inplace=inplace)
1316
1317
1318


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1319
1320
1321
    """Performs Gaussian blurring on the image by given kernel

    The convolution will be using reflection padding corresponding to the kernel size, to maintain the input shape.
1322
    If the image is torch Tensor, it is expected
Haochen Yu's avatar
Haochen Yu committed
1323
    to have [..., H, W] shape, where ... means at most one leading dimension.
1324
1325
1326
1327
1328

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1329
1330
1331
1332

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1333
1334
1335
1336
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1337
1338
1339
1340
1341
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1342
1343
1344
1345

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
1346
1347
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(gaussian_blur)
1348
    if not isinstance(kernel_size, (int, list, tuple)):
1349
        raise TypeError(f"kernel_size should be int or a sequence of integers. Got {type(kernel_size)}")
1350
1351
1352
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
1353
        raise ValueError(f"If kernel_size is a sequence its length should be 2. Got {len(kernel_size)}")
1354
1355
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
1356
            raise ValueError(f"kernel_size should have odd and positive integers. Got {kernel_size}")
1357
1358
1359
1360
1361

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
1362
        raise TypeError(f"sigma should be either float or sequence of floats. Got {type(sigma)}")
1363
1364
1365
1366
1367
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
1368
        raise ValueError(f"If sigma is a sequence, its length should be 2. Got {len(sigma)}")
1369
    for s in sigma:
1370
        if s <= 0.0:
1371
            raise ValueError(f"sigma should have positive values. Got {sigma}")
1372
1373
1374
1375

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
1376
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
1377

1378
        t_img = pil_to_tensor(img)
1379
1380
1381
1382

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
1383
        output = to_pil_image(output, mode=img.mode)
1384
    return output
1385
1386
1387


def invert(img: Tensor) -> Tensor:
1388
    """Invert the colors of an RGB/grayscale image.
1389
1390
1391

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1392
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1393
1394
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1395
1396
1397
1398

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
1399
1400
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(invert)
1401
1402
1403
1404
1405
1406
1407
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1408
    """Posterize an image by reducing the number of bits for each color channel.
1409
1410
1411

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1412
            If img is torch Tensor, it should be of type torch.uint8, and
1413
1414
1415
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1416
1417
1418
1419
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
1420
1421
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(posterize)
1422
    if not (0 <= bits <= 8):
1423
        raise ValueError(f"The number if bits should be between 0 and 8. Got {bits}")
1424
1425
1426
1427
1428
1429
1430
1431

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1432
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1433
1434
1435

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1436
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1437
1438
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1439
1440
1441
1442
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
1443
1444
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(solarize)
1445
1446
1447
1448
1449
1450
1451
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1452
    """Adjust the sharpness of an image.
1453
1454
1455

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1456
1457
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1458
        sharpness_factor (float):  How much to adjust the sharpness. Can be
1459
            any non-negative number. 0 gives a blurred image, 1 gives the
1460
1461
1462
1463
1464
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
1465
1466
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(adjust_sharpness)
1467
1468
1469
1470
1471
1472
1473
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1474
    """Maximize contrast of an image by remapping its
1475
1476
1477
1478
1479
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1480
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1481
1482
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1483
1484
1485
1486

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
1487
1488
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(autocontrast)
1489
1490
1491
1492
1493
1494
1495
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1496
    """Equalize the histogram of an image by applying
1497
1498
1499
1500
1501
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1502
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1503
            where ... means it can have an arbitrary number of leading dimensions.
1504
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1505
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1506
1507
1508
1509

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
1510
1511
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(equalize)
1512
1513
1514
1515
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539


def elastic_transform(
    img: Tensor,
    displacement: Tensor,
    interpolation: InterpolationMode = InterpolationMode.BILINEAR,
    fill: Optional[List[float]] = None,
) -> Tensor:
    """Transform a tensor image with elastic transformations.
    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to grid_sample from the image.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        img (PIL Image or Tensor): Image on which elastic_transform is applied.
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1540
        displacement (Tensor): The displacement field. Expected shape is [1, H, W, 2].
1541
1542
1543
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``.
1544
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
    """
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(elastic_transform)
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if not isinstance(displacement, torch.Tensor):
1560
        raise TypeError("Argument displacement should be a Tensor")
1561
1562
1563
1564
1565
1566
1567

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError(f"img should be PIL Image or Tensor. Got {type(img)}")
        t_img = pil_to_tensor(img)

1568
1569
1570
1571
1572
1573
1574
1575
1576
    shape = t_img.shape
    shape = (1,) + shape[-2:] + (2,)
    if shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {shape}, but given {displacement.shape}")

    # TODO: if image shape is [N1, N2, ..., C, H, W] and
    # displacement is [1, H, W, 2] we need to reshape input image
    # such grid_sampler takes internal code for 4D input

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
    output = F_t.elastic_transform(
        t_img,
        displacement,
        interpolation=interpolation.value,
        fill=fill,
    )

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output, mode=img.mode)
    return output